
Computer Physics Communications 315 (2025) 109701

Available online 16 June 2025
0010-4655/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

Tadah! a Swiss army knife for developing and deployment of machine

learning interatomic potentials

Marcin Kirsz a, , Ayobami Daramola a, , Andreas Hermann a, , Hongxiang Zong b, ,

Graeme J. Ackland a,∗,

a Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
b State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China

A R T I C L E I N F O A B S T R A C T

The review of this paper was arranged by
Prof. Andrew Hazel

Dataset link: https://git.ecdf.ed.ac.uk/tadah

Keywords:

Machine learning interatomic potentials

Molecular dynamics

Scientific machine learning

Physics aware machine learning

Computational modelling

The Tadah! code provides a versatile platform for developing and optimizing Machine Learning Interatomic
Potentials (MLIPs). By integrating composite descriptors, it allows for a nuanced representation of system
interactions, customized with unique cutoff functions and interaction distances. Tadah! supports Bayesian Linear
Regression (BLR) and Kernel Ridge Regression (KRR) to enhance model accuracy and uncertainty management.
A key feature is its hyperparameter optimization cycle, iteratively refining model architecture to improve
transferability. This approach incorporates performance constraints, aligning predictions with experimental and
theoretical data. Tadah! provides an interface for LAMMPS, enabling the deployment of MLIPs in molecular
dynamics simulations. It is designed for broad accessibility, supporting parallel computations on desktop and
HPC systems. Tadah! leverages a modular C++ codebase, utilizing both compile-time and runtime polymorphism
for flexibility and efficiency. Neural network support and predefined bonding schemes are potential future
developments, and Tadah! remains open to community-driven feature expansion. Comprehensive documentation
and command-line tools further streamline the development and application of MLIPs.

Program summary

Program title: Tadah!

CPC Library link to program files: https://doi.org/10.17632/vy6y3tjdr3.1

Developer’s repository link: https://git.ecdf.ed.ac.uk/tadah

Licensing provisions: GPLv3

Programming language: C++

Supplementary material: Installation instructions and usage examples are available in the Tadah! online
documentation at https://tadah.readthedocs.io

Nature of problem: Atomistic modelling, particularly molecular dynamics, is among the most popular techniques
used in physics and chemistry research. Accurate and efficient methods are required to generate forces for
such simulations. Quantum mechanical calculation of the electronic structure is the ``gold standard'' here, but is
restricted to relatively small systems. Hence, interatomic potentials have a role in allowing large scale simulations,
provided they have adequate accuracy.

Over the past two decades, the paradigm has shifted from developing interatomic potentials using physics

informed functional forms to generating machine learning interatomic potentials (MLIPs) with more flexible
mathematical forms, albeit lacking clear interpretability.

MLIPs typically lack physical insights in trained models, requiring comprehensive datasets from methods like
density functional theory during model parametrization. While training on energies and derivatives may ensure
good interpolation within the training data, it frequently lacks transferability, failing environments unlike those
in the training data. At the same time the ability to fit a model to experimental data increasingly seems to be lost.

In essence, the MLIP framework includes a feature vector (descriptor/fingerprint) and a regression method (e.g.,
kernel ridge regression or neural networks). Currently, there are numerous frameworks, but there is no consensus
on a superior approach. Competing factors such as accuracy, transferability, efficiency, and dataset requirements

* Corresponding author.

E-mail address: gjackland@ed.ac.uk (G.J. Ackland).

https://doi.org/10.1016/j.cpc.2025.109701

Received 30 January 2025; Received in revised form 30 April 2025; Accepted 1 June 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0000-0002-3324-4760
http://orcid.org/0000-0001-9064-9871
http://orcid.org/0000-0002-8971-3933
http://orcid.org/0000-0002-0139-4078
http://orcid.org/0000-0002-1205-7675
https://git.ecdf.ed.ac.uk/tadah
https://doi.org/10.17632/vy6y3tjdr3.1
https://git.ecdf.ed.ac.uk/tadah
https://tadah.readthedocs.io
mailto:gjackland@ed.ac.uk
https://doi.org/10.1016/j.cpc.2025.109701
https://doi.org/10.1016/j.cpc.2025.109701
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2025.109701&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Physics Communications 315 (2025) 109701

2

M. Kirsz, A. Daramola, A. Hermann et al.

influence user decisions. Because of the fragmentation of the methodologies, users frequently need to compile
multiple software tools, which then often prove to be not end-user-ready.

A niche exists for a more flexible framework within which users can mix and match descriptor and regression
methods. This would allow MLIP developers to experiment, test, and rapidly deploy models to production, using
the methods best suited to their system, application and target outputs.

It is desirable to provide additional tools for fitting and verification of models. Furthermore, deployment in
molecular dynamics (MD) settings, requires effort to integrate the MLIP with third-party MD software. Plugins
for standard MD codes should be available alongside MLIP fitting codes.

Solution method: Tadah! is a unified program designed for the development of advanced machine learning
interatomic potentials using various descriptors, cutoffs, and regression methods. It also allows rapid deployment
of these through the MD LAMMPS plugin [1]. It supports mono- and multi-species systems as well as advanced
(custom) fitting procedures. The software provides unique pathways to embed prior domain knowledge into a
model and offers a range of additional tools for dataset conversion, manipulation, and plotting.

Tadah! allows users to incorporate their physical insight by combining multiple descriptors into a single composite
descriptor. Each constituent descriptor can be further customized by specifying a unique cutoff function and
distance. Additionally, users can define specific chemical species pairs that each constituent descriptor will target,
enabling tailored interactions within the model.

Tadah! also provides users with a nested fitting procedure that allows the optimization of model hyperparameters
with a custom-defined loss function. In principle, the loss function can incorporate any quantity obtainable from
MD simulation and be compared against experimental values for scoring.

The Tadah! toolkit provides a command-line interface (CLI) binary as well as a C++ API for advanced use. The
majority of features are available via the CLI, while the API allows developers and users to rapidly implement and
test new descriptors and various regression strategies. It supports seamless integration of new types of descriptors,
with an API that enables their addition. We follow the philosophy: ``Implement once, use it everywhere across
Tadah! and LAMMPS.'' The code is open source, and we aim to drive development based on user feedback. We
encourage users to request new features and provide feedback. We are also open to individual contributions and
collaborations.

Additional comments including restrictions and unusual features: Tadah! provides two end-user packages: Tadah!MLIP
for the development of MLIPs and Tadah!LAMMPS for deployment in molecular dynamics settings. The
Tadah!MLIP software can be built as a desktop version using OpenMP. For users working with large datasets
or complex descriptors, a massively parallel version of Tadah!MLIP is available with MPI, designed for HPC
architectures.

References

[1] A.P. Thompson et al., LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic,
meso, and continuum scales, Comput. Phys. Comm. 271 (2022) 10817.

1. Introduction

Atomic-level simulations rely heavily on the choice of interatomic
potentials. While empirical potentials derived from experimental data
are computationally efficient, they often lack accuracy. In contrast, ab
initio potentials, grounded in quantum mechanics, provide robust and
transferable predictions, albeit at a greater computational cost. The
emergence of machine learning interatomic potentials (MLIPs) allows
for the design of models that combine computational efficiency with
the capacity for high accuracy [1].

Numerous software packages have been developed for training
MLIPs [2--11]. Python-based tools support diverse descriptors but are
inherently slower. Conversely, Fortran and C/C++ packages offer speed
but are often restricted to a single descriptor type or regression method.
Although Python codes can be sped up using external routines, the
escalating complexity of fitting routines eventually limits these opti

mizations. The current landscape is dominated by packages employing
neural networks as their preferred regression method.

Constructing an MLIP begins with prior knowledge. This involves se

lecting the functional form for the feature vector (descriptor), regression
methods, training database, and machine learning (ML) hyperparame

ters (HP). These decisions must be made before initiating regression.
These choices control the model’s complexity and its capacity for ac

curacy, computational efficiency, and transferability between different
atomic environments. There is typically a manual and iterative process
where the model is trained on the training data and fine-tuned with
the validation set [12]. Using different pieces of software is suboptimal
from the user’s perspective, as it significantly limits the ability to exper

iment. Moreover, optimizing hyperparameters is crucial during model

development. Surprisingly, to the best of our knowledge, this topic re

mains inadequately addressed within the MLIP community [13--15].

In this work, we present novel, semi-automated training methods
designed to facilitate the development of general-purpose MLIP models
[16,17]. These methods are implemented in the Tadah! software. The
software is fully interfaced with LAMMPS [18], allowing for efficient
large-scale molecular dynamics simulations.

2. Methods and discussion

The goal of interatomic potentials is to represent the potential en

ergy surface (PES) for a given set of atomic coordinates. MLIPs extend
the classical approach by decomposing the system’s total potential en

ergy, 𝑈𝑡𝑜𝑡 into local atomic energies 𝑈𝑖 for each atom. As illustrated
in Fig. 1, local atomic environments are defined within a user-defined
cutoff distance 𝑟𝑐 .

𝑈𝑡𝑜𝑡 =
𝑁∑
𝑖
𝑈𝑖 =

𝑁∑
𝑖
(𝐝𝑖) (1)

In eq. (1), a descriptor vector, 𝐝𝑖, captures information about the
local atomic environment of the 𝑖-th atom within a predefined cutoff
radius 𝑟𝑐 . When integrated into a trained ML model, , it predicts the
local energy 𝑈𝑖. The summation is over all atoms in the simulation. The
forces can be obtained by taking the derivatives of 𝑈𝑡𝑜𝑡 with respect to
the atomic coordinates.

The Tadah! software supports multiple types of descriptors and re

gression methods, as well as the ability to construct composite descrip

tors. This section provides a brief overview of the theory behind MLIPs.
The features unique to Tadah! are discussed in more detail. In particu

lar, we present the generalized form of the descriptor vectors currently

Computer Physics Communications 315 (2025) 109701

3

M. Kirsz, A. Daramola, A. Hermann et al.

Fig. 1. Local atomic environment of atom 𝑖. The atom 𝑗 is considered as within
the local environment of atom 𝑖 if the separation between atoms is within user
defined cutoff distance 𝑟𝑐 .

supported by Tadah! and the semi-automated nested fitting procedure
designed to reduce manual effort during model parametrization and im

prove transferability.

2.1. Parameters

Both  and (𝐝𝑖) are functions.1 They contain two types of param

eters, Learned parameters (LPs) which are optimised in the training pro

cess (e.g. regression coefficients) and hyperparameters (HPs) which are
not (e.g. cutoffs, and even the length of the descriptor vector). Tadah!
offers an external loop which can optimise the hyperparameters either
to improve the fitting, or to optimise some emergent property such as
equation of state.

2.2. Generalised descriptor

The descriptor vector (𝐝) captures information about the local
atomic environment of an atom. To construct 𝐝, we first define a set
of hyperparameters that specify its functional form. Note that vector
component 𝐝(𝑝) of 𝐝 may have the same functional form with a different
set of HPs.

For example, one can construct a simple Lennard-Jones type de

scriptor with two vector components, corresponding to attraction and
repulsion respectively, and consider the exponents of particle separa

tion 𝑟 as the following sets of hyperparameters: {−6}0 and {−12}1.
Additional examples may include descriptors that use Gaussian func

tions, where hyperparameters might define the width and position of
the Gaussians. Chemical species-dependent weights can also be used to
tailor the descriptor for specific interactions, enhancing its sensitivity to
the chemical composition of the environment.

The Tadah! software supports two- and many-body types of descrip

tors. The specific angular type descriptor is omitted, as three-body in

teractions can generally be incorporated into a many-body format. This
approach avoids the cost associated with the computation of angular
descriptors [19]. The list of currently supported types of descriptors is
available in online documentation [20].

2.2.1. Two-body components in the descriptor

The simplest form of component in the descriptor is a two-body func

tional form. It is motivated by the idea that the energy depends on
pairwise interactions between atoms. A two-body 𝑝-th component of
the descriptor of the 𝑖-th atom is

𝐝(𝑝)
𝑖

=
∑
𝑗≠𝑖

𝐵{𝜁}𝑝 (𝑟𝑖𝑗)𝑓
{𝜁}𝑝
𝑐 (𝑟𝑖𝑗) (2)

where 𝐵 is a descriptor specific function with a set of hyperparameters
{𝜁}𝑝, 𝑓𝑐 is a cutoff function which ensures that energy goes smoothly to

1 Strictly,  is a functional and (𝐝𝑖) is a vector of functions.

zero at the cutoff distance, and 𝑟𝑖𝑗 is a separation between 𝑖 and 𝑗 atoms.
The summation is over all neighbours of central atom 𝑖 which are within
𝑟𝑐 . Note that 𝑟𝑐 is included in the {𝜁}𝑝 subset of hyper parameters as it
might be required by the 𝐵 functions as well.

2.2.2. Many-body components of the descriptor

The many-body descriptors of the 𝑖-th atom are motivated by the idea
that the energy depends on the local density. They satisfy the following
form

𝐝(𝑝)
𝑖

={𝜁}𝑝
(
𝝆
{𝜁}𝑝
𝑖

)
(3)

where the vector of atomic density 𝝆𝑖 of the 𝑖-th atom is built by ex

panding the density using the basis set of choice.

𝝆
{𝜁}𝑝
𝑖

=
(∑

𝑗

𝜓
{𝜁}𝑝
1 (𝐫𝑖𝑗),… ,

∑
𝑗

𝜓
{𝜁}𝑝
𝑚𝑎𝑥 (𝐫𝑖𝑗)

)
(4)

For linear regression, the functional  in eq. (3) must ensure in

variance under permutations of atoms of the same species, as well as
inversion, translation, and rotation of the system. In principle, these in

variances can also be incorporated into a custom non-linear model.

2.2.3. Composite descriptors

Tadah! offers the flexibility to incorporate physical insights into the
modelling process by choosing the physical functional forms of the de

scriptor components. These multiple components are combined into a
single, unified custom descriptor vector, referred to as a composite de

scriptor (Fig. 2). This approach allows for a more nuanced representa

tion of the system’s interactions. Each constituent descriptor within this
composite can be further tailored by specifying a unique cutoff func

tion and an interaction distance, enhancing the precision and relevance
of the model. Furthermore, it is possible to define particular chemical
species pairs that each constituent descriptor will target. This capability
enables the creation of highly specific interactions, ensuring the model
accurately reflects the complex dynamics of the system being studied.
By leveraging these features, models can be developed that are not only
highly customized but also deeply informed by domain-specific knowl

edge.

2.3. Regression

Tadah! uses the regularized form of the normal equation during the
regression stage to find the optimal parameters that minimize the error
between predicted and actual data:

𝐰 = (𝐗𝑇𝐗+ 𝜆𝐈)−1𝐗𝑇 𝐭 (5)

where 𝐰 is the optimized weight vector, 𝐗 is the design matrix which
is constructed using descriptor vectors, 𝐭 is the target vector consisting
of energies, forces, and stresses, 𝜆 is the regularization parameter, and
𝐈 is the identity matrix. This closed-form solution is equivalent to mini

mizing the loss function, defined as the sum of squared errors, with the
advantage of being exact.

An evidence approximation algorithm is used to estimate 𝜆, which
helps prevent model overfitting by shrinking the weights. Users also
have the option to select this term manually. Models regularized with
this approach may exhibit higher bias on training data but achieve lower
variance and better accuracy on test data.

Tadah! currently supports two regression methods: Bayesian Linear
Regression (BLR) and Kernel Ridge Regression (KRR) [21]. The key dif

ference between KRR and BLR lies in the computation of the design
matrix 𝐗. Once constructed, both methods apply regularized linear re

gression (eq. (5)). For KRR, the design matrix 𝐗 is replaced by the sparse
kernel matrix 𝐊, constructed using a kernel function 𝑘(𝐱𝑖,𝐱𝑗). Here, the
index 𝑖 goes over all descriptors in the training dataset, while index 𝑗
goes over all preselected basis vectors. For BLR, each row of 𝐗 is post

processed with the basis function of choice, resulting in the Φ matrix.

Computer Physics Communications 315 (2025) 109701

4

M. Kirsz, A. Daramola, A. Hermann et al.

Fig. 2. A schematic representation of the composite descriptor (top) and a sample configuration snippet (bottom) illustrating how it is defined in Tadah!. Parameter
values are illustrative and not physically meaningful. A and B here are placeholders for actual chemical species. Additional descriptors can be appended as needed.

For both algorithms, the design matrix can include descriptor vectors
for structural potential energies and optionally for forces and stresses.
Various kernel types and basis functions are supported. For details, refer
to the online documentation [20].

In BLR, regression is framed as a probabilistic model, allowing for
robust predictions that incorporate uncertainty. BLR assumes a prior
distribution over the weight vector 𝐰. The model updates this prior to
a posterior distribution based on the observed data. This approach not
only predicts outputs but also provides a measure of uncertainty for
predictions, which is valuable for assessing model confidence.

Our KRR implementation leverages the Empirical Kernel Map (EKM)
[22], enabling the processing of large datasets and producing sparse
outputs. EKM kernelizes algorithms that use vectors by projecting new
vectors into a feature space defined by basis vectors and a kernel func

tion. This allows standard (not kernalized) algorithms to operate with

out modifications. Tadah! provides several tools for selecting a suitable
set of basis descriptor vectors, such as simple random selection or recur

sive finding of linearly independent vectors in a kernel space [23,24].
Thanks to EKM, tools from BLR can be applied to the sparse matrix 𝐊,
allowing for the prediction of errors and uncertainty estimation in the
model.

2.4. Nested fitting procedure

One of the major challenges for MLIPs is their poor transferability
beyond the training dataset. Tadah! addresses this by incorporating a
hyperparameter optimization cycle. Unlike standard approaches that
primarily fit forces and energies, Tadah! employs an iterative procedure
to generate ``trial'' potentials with varying hyperparameters. These are
applied via LAMMPS to evaluate macroscopic properties, fitting them to
theoretical or experimental data. The best-performing2 combination of
descriptors and kernels are chosen resulting in increased performance,
transferability, and applicability.

2 Either in terms of the fit to training data, execution speed, or a custom user

defined metric.

In developing MLIPs, both LPs and HPs are crucial. The model archi

tecture, including the choice of ML algorithm and descriptors, reflects
prior knowledge and is fine-tuned through HP optimization. The global
objective function, known as the evaluation function in ML literature,
plays a central role.

The aim of HP optimization is to minimize the global loss function
(,), which is a common choice for a global objective function,
where  is the model and  is the training dataset.

𝜃∗ = argmin
𝜃∈Θ

(,) (6)

Here, the model is parameterized by a set of HPs 𝜃, and the goal is
to find the 𝜃∗ which minimize (,) within a search space Θ.

HP optimization differs from other optimization problems. While it
is theoretically possible to obtain the gradient of the loss function with
respect to the HPs, in practice, this is rare due to discontinuities or non

differentiable search surfaces. Care must be taken to avoid overfitting
HPs to a particular dataset, as different datasets may require different
optimal HP values.

In general, MLIPs achieve high accuracy for constructing PES for
local atomic configurations similar to training data, owing to using
generic functions with numerous free parameters. Traditional MLIP
model development involves adjusting HPs during manual iterative
training and validation, followed by final testing. This approach is sim

plistic, resource-intensive and time-consuming.

The Tadah! global loss function (GLF) is defined as:

𝑔(,) =
∑
𝛼

𝜔𝛼𝛼(,) (7)

In this equation, 𝛼 represents the model error associated with the
𝛼𝑡ℎ constraint, and the 𝜔𝛼 are weighting parameters that indicate the im

portance of 𝛼 in the fitting procedure. Tadah! provides several different
loss functions. The simplest constraint loss function takes the following
form:

𝛼(,) = |||𝛼(,) − 𝑡𝛼
|||
𝑁

(8)

Computer Physics Communications 315 (2025) 109701

5

M. Kirsz, A. Daramola, A. Hermann et al.

Fig. 3. The hyperparameter optimization routine as implemented in Tadah!. The MLIP development starts with constructing a DFT dataset. Users can employ existing
datasets or build new ones using external tools. The training stage involves sampling from the DFT data to create a training dataset with the Tadah!MLIP toolkit. Next,
the MLIP developer defines the model and selects which HPs to optimize, along with setting appropriate search space and performance constraints. Once configured,
the automated optimization process begins, generating ``trial'' potentials and evaluating them against PCs. Upon completion, the MLIP candidate can be manually
evaluated by the developer before being distributed to MD users. Tadah!LAMMPS is an independent plugin of Tadah!MLIP and is required to run MD simulations
with the final MLIP.

Here, 𝛼 denotes the prediction for the 𝛼𝑡ℎ constraint, with 𝑡𝛼 as the
target value. The power 𝑁 determines the type of loss function: setting
𝑁 = 1 results in an absolute loss, while 𝑁 = 2 yields the commonly used
quadratic loss function.

The weight factor 𝜔𝛼 has units of the corresponding constraint 𝛼
raised to the 𝑁𝑡ℎ power. This ensures that the product in eq. (7) is unit

less. The interpretation of the weighting parameters is intuitive—they
control the numerical precision of the obtained loss for a given 𝛼 relative
to other weights. For example, doubling a weight makes its associated
constraint twice as important as before.

The GLF evaluates the model’s performance not just on the valida

tion set but also by incorporating performance constraints (PC) on the
model’s physical predictions. These constraints enhance the predictive
power of the interatomic potential. PCs can be divided into two types:
the RMSE fit to target vector t (eq. (5)), and those that are physically
motivated, such as the model’s ability to reproduce specific surface en

ergies or energy differences between crystal structures. Tadah! provides
a flexible interface that allows users to use custom LAMMPS scripts to
evaluate the PCs of their choice.

In contrast, search space constraints (SSC) define the configurational
space for HPs, which the optimization algorithm explores to satisfy the
PCs. SSCs are applied more directly to the model’s architecture, influenc

ing parameters like the positions and widths of Gaussians in a descriptor
or a cutoff distance.

The global optimization algorithm (GOA), as illustrated in Fig. 3,
works iteratively to optimize model architecture with respect to training
data, validation sets, search space, and performance constraints. The
training and validation data sets are constructed by the user and remain
unchanged throughout the process, as Tadah! currently lacks tools for
automating this step. The success of the potential depends on the quality
of the training data and Tadah! allows the user to tune the training data
to their intended application. The primary goal of the GOA is to enhance
model architecture and, consequently, its transferability.

Optimization begins by defining target PCs and SSCs in a configura

tion file, where the user assigns a weight to each PC indicating its im

portance. The automated iterative process involves: selecting candidate
HPs from SSCs, training the model with new settings, and evaluating

performance against PCs. This cycle repeats until convergence criteria,
like a specific GLF value, are met, or until manually stopped. The po

tential is refined through both changes in HPs and values of 𝐰 (Fig. 3
and Fig. 4).

The HP selection process is managed by the MaxLIPO+TR algorithm
from the Dlib C++ library [24]. An enhancement of the original LIPO
algorithm [25], it estimates the Lipschitz constant to construct an upper
bound to the objective function, optimizing towards a global maximum.
It evaluates points randomly, comparing their upper bounds to find im

provements. To address slow convergence near optima, it employs a
trust region method (+TR), assuming a quadratic surface to swiftly con

verge on local optima [26,27]. Tadah! also supports multiple global and
local optimizers from the NLopt library [28].

3. Implementation

The Tadah! code is open-source and implemented in C++. Developed
using Git, it promotes collaboration through a modular structure (see
Fig. 5). The software consists of six independent modules that support
the user-facing components, Tadah!MLIP and Tadah!LAMMPS, enabling
efficient code reuse. To enable flexible usage as a stand-alone library, it
employs generic programming techniques, like class templates, provid

ing compile-time polymorphism for efficient and reusable components.

For command-line interfaces and the LAMMPS plugin, which require
run-time polymorphism, Tadah! uses a factory method design pattern.
This approach allows for selecting model components based on configu

ration files, combining compile-time efficiency with run-time flexibility.
The object-oriented design focuses on performance, using shallow ab

straction layers for critical functionalities like descriptor computation
to maintain efficiency. API documentation is generated with Doxygen
and published online on ReadtheDocs for easy access [20].

Our software development focused on robustness; unit, functional
and integration tests are supported by GitLab continuous integration and
continuous delivery (CI/CD) to automate processes, catch bugs early,
and ensure compatibility with new LAMMPS versions. This approach
enables rapid, reliable software releases and simplifies collaboration and
the addition of new features.

Computer Physics Communications 315 (2025) 109701

6

M. Kirsz, A. Daramola, A. Hermann et al.

Fig. 4. A sample configuration file used by the Nested Fitting Procedure, highlighting how performance constraints (PCs) can be integrated. The ERMSE keyword
illustrates a basic constraint on the energy RMSE. Additional physics-based constraints can be incorporated via custom LAMMPS scripts, as shown by the LAMMPS -
script line. Here, the variable lata_loss is defined in a separate script (in.lata) to assess how closely the model reproduces certain macroscopic properties (e.g.,
lattice constants at a given pressure). By adjusting search space constraints (OPTIM entries) and assigning weights to different PCs, users can tailor the optimization
to specific applications and balance trade-offs between accuracy, speed, and other desired criteria.

Fig. 5. The Tadah! codebase is written in object-oriented C++ and consists of six
independent modules, combined to create two user-facing modules. Tadah!MLIP
is designed for training and optimizing MLIPs, while Tadah!LAMMPS deploys
them in the MD setting. This modular approach enhances performance, code
reusability, and reduces maintenance.

Tadah!MLIP can be compiled on desktops and high-performance
computing (HPC) facilities. The desktop version is parallelized with
OpenMP and can handle datasets of tens of thousands of configurations.
For more demanding tasks, the MPI version, specifically designed for
HPC architectures, fully parallelizes descriptor computation and regres

sion using an MPI host-client design pattern, managing extremely large
datasets necessary for accurate MLIP parameterization.

3.1. Dependencies and availability

The software is available under the GPLv3 license from https://git.

ecdf.ed.ac.uk/tadah, and the online documentation is hosted at https://

tadah.readthedocs.io. The LAMMPS interface and Tadah!MLIP toolkit
require C++11 and C++17 compatible compilers, respectively. The code
has been successfully deployed on a range of Linux architectures, from
desktop versions like Alpine or Ubuntu to the HPE Cray Linux Envi

ronment, as well as macOS. Fortran routines from LAPACK [29] and

ScaLAPACK [30] (for the Tadah! MPI version only) must be available on
the user’s system. Tadah! utilizes CMake for configuration and building
of its components. Git and an internet connection are required during
the installation process.

The code has not been tested on Windows; however, we expect the
LAMMPS plugin to be compatible. For Windows users, we recommend
compiling either Tadah!MLIP or Tadah!LAMMPS using a Linux virtual
machine.

The software employs several popular libraries such as Dlib [24],
Boost, toml11, and CLI11, which are either contained within the Tadah!
codebase or automatically downloaded and configured during the in

stallation process when needed for a build.

4. Typical usage

4.1. Using Tadah! potentials

Many users are primarily interested in utilizing pre-trained poten

tials rather than developing them. For this purpose, the Tadah!LAMMPS
plugin is all they need, as it allows these potentials to be seamlessly in

tegrated with LAMMPS like any other interatomic potential. The poten

tials are distributed as ASCII files and are generated by the Tadah!MLIP
software.

To use this feature, users must git clone the LAMMPS plugin
from the Tadah! repository into the lammps/lib directory. The re

maining compilation process is straightforward and follows the standard
LAMMPS library and package installation procedures. For detailed steps,
refer to the Tadah! documentation [20]. Once compiled, users can in

voke Tadah! potentials using the standard LAMMPS syntax:

pair_style tadah
pair_coeff * * pot.tadah ELEMENT1 ELEMENT2

where, pot.tadah is the filename of the interatomic potential.

4.2. MLIPs development toolkit

This section provides a brief overview of the Tadah!MLIP toolkit, de

signed specifically for the development of Machine Learning Interatomic
Potentials (MLIPs). The primary entry point to Tadah! is the command

line program tadah, which offers various subcommands. These sub

commands may require simple configuration files to facilitate MLIPs
development. For examples and detailed explanations, please refer to
the online documentation [20].

Key subcommands include:

https://git.ecdf.ed.ac.uk/tadah
https://git.ecdf.ed.ac.uk/tadah
https://tadah.readthedocs.io
https://tadah.readthedocs.io

Computer Physics Communications 315 (2025) 109701

7

M. Kirsz, A. Daramola, A. Hermann et al.

data: Offers dataset manipulation functionalities such as joining,
splitting, finding duplicate structures, and selecting subsets. train: Per

forms regression training on a given dataset. predict: Predicts energy,
forces, and stresses. hpo: Conducts hyperparameter optimization and
training using nested fitting procedure as described in 2.4. write: Dumps
dataset configurations into formats like CASTEP .cell, VASP POSCAR,
or LAMMPS data files. convert: Assists in extracting relevant data
(atomic positions, energies and so on) from CASTEP (.md, .geom, or
.castep) or VASP (OUTCAR or vasprun.xml) DFT calculations to con

struct training datasets. analysis: Provides utilities to plot and visualize
cutoff functions, basis functions (such as Gaussians), and descriptors.
properties: Computes the interaction energy between two atoms using
a trained MLIP.

The CLI tools are well-documented and offer helpful descriptions
when used with the -h or --help flags. For instance, tadah data
-h provides guidance on dataset subcommands. Further documentation
is available online.

5. Limitations

Tadah! does not support predefined bonds; hence, everything is
treated as atomic and intramolecular bonding must be learned from the
dataset. This means that bond breaking should be treated with extreme
caution unless included in the training data. Tadah! also lacks schemes
for incorporating long-distance interactions.

5.1. Ongoing development

Tadah! remains under development. The framework was designed to
make it easy to implement enhancements.

Notably, neural networks are currently not supported but could be
plugged in to replace the regression step. Implementing new descriptors
such as 3-body, MACE or ACE that deviate from the functional forms of
eq. (2) or eq. (3) will require modifications to the Tadah! codebase.

5.2. Applications

A range of applications are under way using the Tadah! code. As with
all MLIPs, these are currently subject to a thorough testing for stability
and transferability. To date, two Tadah! potentials have been published,
one for krypton [31] and one for nitrogen [16,17]. These were both
parameterized using high-quality coupled cluster quantum chemistry
databases rather than DFT, and are designed for execution speed. Both
have been initially applied to the fluid state and show excellent agree

ment with neutron scattering data. The krypton potential outperforms
existing models for melt curve and equation of state calculations. The ni

trogen potential shows remarkable transferability, describing no fewer
than seven crystal phases. Full details can be found in the cited refer

ences.

CRediT authorship contribution statement

Marcin Kirsz: Writing -- original draft, Software, Methodology, Con

ceptualization. Ayobami Daramola: Writing -- review & editing, Soft

ware. Andreas Hermann: Writing -- review & editing, Funding acqui

sition. Hongxiang Zong: Supervision, Conceptualization. Graeme J.
Ackland: Writing -- review & editing, Supervision, Methodology, Fund

ing acquisition, Conceptualization.

Rights retention statement

For the purpose of open access, the author has applied a Cre

ative Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising from this submission.

Declaration of generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used Edinburgh Uni

versity’s own platform ELM (Edinburgh Language Model) in order to
improve the readability and language of the manuscript. After using
this tool, the authors reviewed and edited the content as needed and
take full responsibility for the content of the published article.

Funding

This work was supported by the UK national high-performance com

puting service, ARCHER2, for which access was obtained via the UKCP
consortium and funded by EPSRC grant ref EP/X035891/1. M.K. was
supported by the ARCHER2 eCSE software development programme,
project ARCHER2-eCSE11-11.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

We would like to thank C.G. Pruteanu for their insightful reading
and comments, and A. J. Iwasaki for testing the software and providing
valuable feedback.

Data availability

The software is available from: https://git.ecdf.ed.ac.uk/tadah.

References

[1] V.L. Deringer, M.A. Caro, G. Csányi, Machine learning interatomic poten

tials as emerging tools for materials science, Adv. Mater. 31 (46) (2019)
1902765, https://doi.org/10.1002/adma.201902765, https://onlinelibrary.wiley.

com/doi/abs/10.1002/adma.201902765.

[2] I. Batatia, D.P. Kovacs, G. Simm, C. Ortner, G. Csanyi, Mace: higher order equiv

ariant message passing neural networks for fast and accurate force fields, in:
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh (Eds.), Ad

vances in Neural Information Processing Systems, vol. 35, Curran Associates, Inc.,
2022, pp. 11423--11436, https://proceedings.neurips.cc/paper_files/paper/2022/

file/4a36c3c51af11ed9f34615b81edb5bbc-Paper-Conference.pdf.

[3] A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Gaussian approximation poten

tials: the accuracy of quantum mechanics, without the electrons, Phys. Rev. Lett.
104 (2010) 136403, https://doi.org/10.1103/PhysRevLett.104.136403, https://

link.aps.org/doi/10.1103/PhysRevLett.104.136403.

[4] H. Yanxon, D. Zagaceta, B. Tang, D.S. Matteson, Q. Zhu, Pyxtal_ff: a python library
for automated force field generation open access received pyxtal_ff: a python library
for automated force field generation, Mach. Learn.: Sci. Technol. 2 (2021) 27001,
https://doi.org/10.1088/2632-2153/abc940.

[5] H. Wang, L. Zhang, J. Han, W. E, Deepmd-kit: a deep learning package for many

body potential energy representation and molecular dynamics, Comput. Phys. Com

mun. 228 (2018) 178--184, https://doi.org/10.1016/j.cpc.2018.03.016, https://

www.sciencedirect.com/science/article/pii/S0010465518300882.

[6] L. Himanen, M.O. Jäger, E.V. Morooka, F. Federici Canova, Y.S. Ranawat, D.Z.
Gao, P. Rinke, A.S. Foster, Dscribe: library of descriptors for machine learning
in materials science, Comput. Phys. Commun. 247 (2020) 106949, https://doi.

org/10.1016/j.cpc.2019.106949, https://www.sciencedirect.com/science/article/

pii/S0010465519303042.

[7] Y. Lysogorskiy, C. van der Oord, A. Bochkarev, S. Menon, M. Rinaldi, T. Hammer

schmidt, M. Mrovec, A. Thompson, G. Csányi, C. Ortner, R. Drautz, Performant
implementation of the atomic cluster expansion (pace) and application to copper
and silicon, npj Comput. Mater. 7 (1) (2021) 1--12, https://doi.org/10.1038/s41524-

021-00559-9, https://www.nature.com/articles/s41524-021-00559-9.

[8] I.S. Novikov, K. Gubaev, E.V. Podryabinkin, A.V. Shapeev, The mlip package: mo

ment tensor potentials with mpi and active learning, Mach. Learn.: Sci. Technol.
2 (2) (2020) 025002, https://doi.org/10.1088/2632-2153/abc9fe.

[9] K.T. Schütt, P. Kessel, M. Gastegger, K.A. Nicoli, A. Tkatchenko, K.R. Müller, Schnet

pack: a deep learning toolbox for atomistic systems, J. Chem. Theory Comput. 15
(2019) 448--455, https://pubs.acs.org/doi/full/10.1021/acs.jctc.8b00908.

https://git.ecdf.ed.ac.uk/tadah
https://doi.org/10.1002/adma.201902765
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201902765
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201902765
https://proceedings.neurips.cc/paper_files/paper/2022/file/4a36c3c51af11ed9f34615b81edb5bbc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4a36c3c51af11ed9f34615b81edb5bbc-Paper-Conference.pdf
https://doi.org/10.1103/PhysRevLett.104.136403
https://link.aps.org/doi/10.1103/PhysRevLett.104.136403
https://link.aps.org/doi/10.1103/PhysRevLett.104.136403
https://doi.org/10.1088/2632-2153/abc940
https://doi.org/10.1016/j.cpc.2018.03.016
https://www.sciencedirect.com/science/article/pii/S0010465518300882
https://www.sciencedirect.com/science/article/pii/S0010465518300882
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1016/j.cpc.2019.106949
https://www.sciencedirect.com/science/article/pii/S0010465519303042
https://www.sciencedirect.com/science/article/pii/S0010465519303042
https://doi.org/10.1038/s41524-021-00559-9
https://doi.org/10.1038/s41524-021-00559-9
https://www.nature.com/articles/s41524-021-00559-9
https://doi.org/10.1088/2632-2153/abc9fe
https://pubs.acs.org/doi/full/10.1021/acs.jctc.8b00908

Computer Physics Communications 315 (2025) 109701

8

M. Kirsz, A. Daramola, A. Hermann et al.

[10] X. Gao, F. Ramezanghorbani, O. Isayev, J.S. Smith, A.E. Roitberg, Torchani: a
free and open source pytorch-based deep learning implementation of the ani neu

ral network potentials, J. Chem. Inf. Model. 60 (7) (2020) 3408--3415, https://

doi.org/10.1021/acs.jcim.0c00451, pMID: 32568524.

[11] M. Rupp, E. Küçükbenli, G. Csányi, Guest editorial: special topic on software for
atomistic machine learning, J. Chem. Phys. 161 (6) (2024) 060401, https://doi.

org/10.1063/5.0228461, https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.

0228461/20104152/060401_1_5.0228461.pdf.

[12] L. Yang, A. Shami, On hyperparameter optimization of machine learning al

gorithms: theory and practice, Neurocomputing 415 (2020) 295--316, https://

doi.org/10.1016/j.neucom.2020.07.061, https://www.sciencedirect.com/science/

article/pii/S0925231220311693.

[13] L. Fiedler, N. Hoffmann, P. Mohammed, G.A. Popoola, T. Yovell, V. Oles, J. Austin El

lis, S. Rajamanickam, A. Cangi, Training-free hyperparameter optimization of neural
networks for electronic structures in matter, Mach. Learn.: Sci. Technol. 3 (4) (2022)
045008, https://doi.org/10.1088/2632-2153/ac9956.

[14] D.F. Thomas du Toit, V.L. Deringer, Cross-platform hyperparameter optimization for
machine learning interatomic potentials, J. Chem. Phys. 159 (2) (2023) 024803,
https://doi.org/10.1063/5.0155618, https://pubs.aip.org/aip/jcp/article-pdf/doi/

10.1063/5.0155618/18281499/024803_1_5.0155618.pdf.

[15] D.F.T. du Toit, Y. Zhou, V.L. Deringer, Hyperparameter optimization for atomic clus

ter expansion potentials, J. Chem. Theory Comput. 8 (2024), http://arxiv.org/abs/

2408.00656.

[16] M. Kirsz, C.G. Pruteanu, P.I.C. Cooke, G.J. Ackland, Understanding solid nitro

gen through molecular dynamics simulations with a machine-learning potential,
Phys. Rev. B 110 (2024) 184107, https://doi.org/10.1103/PhysRevB.110.184107,
https://link.aps.org/doi/10.1103/PhysRevB.110.184107.

[17] C.G. Pruteanu, M. Kirsz, G.J. Ackland, Frenkel line in nitrogen terminates at the
triple point, J. Phys. Chem. Lett. 12 (47) (2021) 11609--11615, https://doi.org/10.

1021/acs.jpclett.1c03206, pMID: 34812632.

[18] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S.
Crozier, P.J. in ’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J.
Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS - a flexible simulation tool
for particle-based materials modeling at the atomic, meso, and continuum scales,
Comput. Phys. Commun. 271 (2022) 108171, https://doi.org/10.1016/j.cpc.2021.

108171.

[19] Y. Zhang, C. Hu, B. Jiang, Embedded atom neural network potentials: effi

cient and accurate machine learning with a physically inspired representation, J.
Phys. Chem. Lett. 10 (17) (2019) 4962--4967, https://doi.org/10.1021/acs.jpclett.

9b02037, pMID: 31397157.

[20] M. Kirsz, G.J. Ackland, Tadah! Machine learning interatomic potentials software,
https://tadah.readthedocs.io, 2024.

[21] C.M. Bishop, Machine Learning and Pattern Recognition, Springer-Verlag, 2006.

[22] B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, A.J. Smola,
Input space versus feature space in kernel-based methods, IEEE Trans. Neural Netw.
10 (5) (1999) 1000--1017, https://doi.org/10.1109/72.788641, cited by: 1065.

[23] Y. Engel, S. Mannor, R. Meir, The kernel recursive least-squares algorithm, IEEE
Trans. Signal Process. 52 (8) (2004) 2275--2285, https://doi.org/10.1109/TSP.2004.

830985.

[24] D.E. King, Dlib-ml: a machine learning toolkit, J. Mach. Learn. Res. 10 (2009)
1755--1758.

[25] C. Malherbe, N. Vayatis, Global optimization of Lipschitz functions, in: Proceed

ings of the 34th International Conference on Machine Learning, vol. 70, ICML’17,
JMLR.org, 2017, pp. 2314--2323.

[26] S.M. Goldfeld, R.E. Quandt, H.F. Trotter, Maximization by quadratic hill-climbing,
Econometrica 34 (3) (1966) 541, https://doi.org/10.2307/1909768.

[27] D.C. Sorensen, Newton’s method with a model trust region modification, SIAM J.
Numer. Anal. 19 (2) (1982) 409--426, https://doi.org/10.1137/0719026, http://

epubs.siam.org/doi/10.1137/0719026.

[28] Steven G. Johnson, The NLopt nonlinear-optimization package, https://github.com/

stevengj/nlopt, 2007.

[29] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide, 3rd
edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.

[30] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R.C. Whaley, ScaLA

PACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1997.

[31] A.J. Iwasaki, M. Kirsz, C.G. Pruteanu, G.J. Ackland, An accurate machine-learned
potential for krypton under extreme conditions, J. Phys. Chem. Lett. 16 (2025)
1559--1566.

https://doi.org/10.1021/acs.jcim.0c00451
https://doi.org/10.1021/acs.jcim.0c00451
https://doi.org/10.1063/5.0228461
https://doi.org/10.1063/5.0228461
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0228461/20104152/060401_1_5.0228461.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0228461/20104152/060401_1_5.0228461.pdf
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1016/j.neucom.2020.07.061
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://www.sciencedirect.com/science/article/pii/S0925231220311693
https://doi.org/10.1088/2632-2153/ac9956
https://doi.org/10.1063/5.0155618
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0155618/18281499/024803_1_5.0155618.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0155618/18281499/024803_1_5.0155618.pdf
http://arxiv.org/abs/2408.00656
http://arxiv.org/abs/2408.00656
https://doi.org/10.1103/PhysRevB.110.184107
https://link.aps.org/doi/10.1103/PhysRevB.110.184107
https://doi.org/10.1021/acs.jpclett.1c03206
https://doi.org/10.1021/acs.jpclett.1c03206
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1021/acs.jpclett.9b02037
https://doi.org/10.1021/acs.jpclett.9b02037
https://tadah.readthedocs.io
http://refhub.elsevier.com/S0010-4655(25)00203-6/bib65A704727BBF3FB74DD9A6B21269064As1
https://doi.org/10.1109/72.788641
https://doi.org/10.1109/TSP.2004.830985
https://doi.org/10.1109/TSP.2004.830985
http://refhub.elsevier.com/S0010-4655(25)00203-6/bib204151369B0775E8003DDA9F100DCCC8s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bib204151369B0775E8003DDA9F100DCCC8s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bib2522274A4710CF84182F822C8C0BBA30s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bib2522274A4710CF84182F822C8C0BBA30s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bib2522274A4710CF84182F822C8C0BBA30s1
https://doi.org/10.2307/1909768
https://doi.org/10.1137/0719026
http://epubs.siam.org/doi/10.1137/0719026
http://epubs.siam.org/doi/10.1137/0719026
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
http://refhub.elsevier.com/S0010-4655(25)00203-6/bibC3091542F1B34B7D1BC7199562F56D05s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bibC3091542F1B34B7D1BC7199562F56D05s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bibC3091542F1B34B7D1BC7199562F56D05s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bib75ED89791E1997D58D57456262786673s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bib75ED89791E1997D58D57456262786673s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bib75ED89791E1997D58D57456262786673s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bib75ED89791E1997D58D57456262786673s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bibE843F6846E0AB21DC35967ACCBC9F6C4s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bibE843F6846E0AB21DC35967ACCBC9F6C4s1
http://refhub.elsevier.com/S0010-4655(25)00203-6/bibE843F6846E0AB21DC35967ACCBC9F6C4s1

	Tadah! a Swiss army knife for developing and deployment of machine learning interatomic potentials
	1 Introduction
	2 Methods and discussion
	2.1 Parameters
	2.2 Generalised descriptor
	2.2.1 Two-body components in the descriptor
	2.2.2 Many-body components of the descriptor
	2.2.3 Composite descriptors

	2.3 Regression
	2.4 Nested fitting procedure

	3 Implementation
	3.1 Dependencies and availability

	4 Typical usage
	4.1 Using Tadah! potentials
	4.2 MLIPs development toolkit

	5 Limitations
	5.1 Ongoing development
	5.2 Applications

	CRediT authorship contribution statement
	Rights retention statement
	Declaration of generative AI and AI-assisted technologies in the writing process
	Funding
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

