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The Tadah! code provides a versatile platform for developing and optimizing Machine Learning Interatomic 
Potentials (MLIPs). By integrating composite descriptors, it allows for a nuanced representation of system 
interactions, customized with unique cutoff functions and interaction distances. Tadah! supports Bayesian Linear 
Regression (BLR) and Kernel Ridge Regression (KRR) to enhance model accuracy and uncertainty management. 
A key feature is its hyperparameter optimization cycle, iteratively refining model architecture to improve 
transferability. This approach incorporates performance constraints, aligning predictions with experimental and 
theoretical data. Tadah! provides an interface for LAMMPS, enabling the deployment of MLIPs in molecular 
dynamics simulations. It is designed for broad accessibility, supporting parallel computations on desktop and 
HPC systems. Tadah! leverages a modular C++ codebase, utilizing both compile-time and runtime polymorphism 
for flexibility and efficiency. Neural network support and predefined bonding schemes are potential future 
developments, and Tadah! remains open to community-driven feature expansion. Comprehensive documentation 
and command-line tools further streamline the development and application of MLIPs.

Program summary

Program title: Tadah!

CPC Library link to program files: https://doi.org/10.17632/vy6y3tjdr3.1

Developer’s repository link: https://git.ecdf.ed.ac.uk/tadah

Licensing provisions: GPLv3

Programming language: C++

Supplementary material: Installation instructions and usage examples are available in the Tadah! online 
documentation at https://tadah.readthedocs.io

Nature of problem: Atomistic modelling, particularly molecular dynamics, is among the most popular techniques 
used in physics and chemistry research. Accurate and efficient methods are required to generate forces for 
such simulations. Quantum mechanical calculation of the electronic structure is the ``gold standard'' here, but is 
restricted to relatively small systems. Hence, interatomic potentials have a role in allowing large scale simulations, 
provided they have adequate accuracy.

Over the past two decades, the paradigm has shifted from developing interatomic potentials using physics

informed functional forms to generating machine learning interatomic potentials (MLIPs) with more flexible 
mathematical forms, albeit lacking clear interpretability.

MLIPs typically lack physical insights in trained models, requiring comprehensive datasets from methods like 
density functional theory during model parametrization. While training on energies and derivatives may ensure 
good interpolation within the training data, it frequently lacks transferability, failing environments unlike those 
in the training data. At the same time the ability to fit a model to experimental data increasingly seems to be lost.

In essence, the MLIP framework includes a feature vector (descriptor/fingerprint) and a regression method (e.g., 
kernel ridge regression or neural networks). Currently, there are numerous frameworks, but there is no consensus 
on a superior approach. Competing factors such as accuracy, transferability, efficiency, and dataset requirements 
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influence user decisions. Because of the fragmentation of the methodologies, users frequently need to compile 
multiple software tools, which then often prove to be not end-user-ready.

A niche exists for a more flexible framework within which users can mix and match descriptor and regression 
methods. This would allow MLIP developers to experiment, test, and rapidly deploy models to production, using 
the methods best suited to their system, application and target outputs.

It is desirable to provide additional tools for fitting and verification of models. Furthermore, deployment in 
molecular dynamics (MD) settings, requires effort to integrate the MLIP with third-party MD software. Plugins 
for standard MD codes should be available alongside MLIP fitting codes.

Solution method: Tadah! is a unified program designed for the development of advanced machine learning 
interatomic potentials using various descriptors, cutoffs, and regression methods. It also allows rapid deployment 
of these through the MD LAMMPS plugin [1]. It supports mono- and multi-species systems as well as advanced 
(custom) fitting procedures. The software provides unique pathways to embed prior domain knowledge into a 
model and offers a range of additional tools for dataset conversion, manipulation, and plotting.

Tadah! allows users to incorporate their physical insight by combining multiple descriptors into a single composite 
descriptor. Each constituent descriptor can be further customized by specifying a unique cutoff function and 
distance. Additionally, users can define specific chemical species pairs that each constituent descriptor will target, 
enabling tailored interactions within the model.

Tadah! also provides users with a nested fitting procedure that allows the optimization of model hyperparameters 
with a custom-defined loss function. In principle, the loss function can incorporate any quantity obtainable from 
MD simulation and be compared against experimental values for scoring.

The Tadah! toolkit provides a command-line interface (CLI) binary as well as a C++ API for advanced use. The 
majority of features are available via the CLI, while the API allows developers and users to rapidly implement and 
test new descriptors and various regression strategies. It supports seamless integration of new types of descriptors, 
with an API that enables their addition. We follow the philosophy: ``Implement once, use it everywhere across 
Tadah! and LAMMPS.'' The code is open source, and we aim to drive development based on user feedback. We 
encourage users to request new features and provide feedback. We are also open to individual contributions and 
collaborations.

Additional comments including restrictions and unusual features: Tadah! provides two end-user packages: Tadah!MLIP 
for the development of MLIPs and Tadah!LAMMPS for deployment in molecular dynamics settings. The 
Tadah!MLIP software can be built as a desktop version using OpenMP. For users working with large datasets 
or complex descriptors, a massively parallel version of Tadah!MLIP is available with MPI, designed for HPC 
architectures.

References

[1] A.P. Thompson et al., LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, 
meso, and continuum scales, Comput. Phys. Comm. 271 (2022) 10817.

1. Introduction

Atomic-level simulations rely heavily on the choice of interatomic 
potentials. While empirical potentials derived from experimental data 
are computationally efficient, they often lack accuracy. In contrast, ab 
initio potentials, grounded in quantum mechanics, provide robust and 
transferable predictions, albeit at a greater computational cost. The 
emergence of machine learning interatomic potentials (MLIPs) allows 
for the design of models that combine computational efficiency with 
the capacity for high accuracy [1].

Numerous software packages have been developed for training 
MLIPs [2--11]. Python-based tools support diverse descriptors but are 
inherently slower. Conversely, Fortran and C/C++ packages offer speed 
but are often restricted to a single descriptor type or regression method. 
Although Python codes can be sped up using external routines, the 
escalating complexity of fitting routines eventually limits these opti

mizations. The current landscape is dominated by packages employing 
neural networks as their preferred regression method.

Constructing an MLIP begins with prior knowledge. This involves se

lecting the functional form for the feature vector (descriptor), regression 
methods, training database, and machine learning (ML) hyperparame

ters (HP). These decisions must be made before initiating regression. 
These choices control the model’s complexity and its capacity for ac

curacy, computational efficiency, and transferability between different 
atomic environments. There is typically a manual and iterative process 
where the model is trained on the training data and fine-tuned with 
the validation set [12]. Using different pieces of software is suboptimal 
from the user’s perspective, as it significantly limits the ability to exper

iment. Moreover, optimizing hyperparameters is crucial during model 

development. Surprisingly, to the best of our knowledge, this topic re

mains inadequately addressed within the MLIP community [13--15].

In this work, we present novel, semi-automated training methods 
designed to facilitate the development of general-purpose MLIP models 
[16,17]. These methods are implemented in the Tadah! software. The 
software is fully interfaced with LAMMPS [18], allowing for efficient 
large-scale molecular dynamics simulations.

2. Methods and discussion

The goal of interatomic potentials is to represent the potential en

ergy surface (PES) for a given set of atomic coordinates. MLIPs extend 
the classical approach by decomposing the system’s total potential en

ergy, 𝑈𝑡𝑜𝑡 into local atomic energies 𝑈𝑖 for each atom. As illustrated 
in Fig. 1, local atomic environments are defined within a user-defined 
cutoff distance 𝑟𝑐 . 

𝑈𝑡𝑜𝑡 =
𝑁∑
𝑖 
𝑈𝑖 =

𝑁∑
𝑖 
(𝐝𝑖) (1)

In eq. (1), a descriptor vector, 𝐝𝑖, captures information about the 
local atomic environment of the 𝑖-th atom within a predefined cutoff 
radius 𝑟𝑐 . When integrated into a trained ML model, , it predicts the 
local energy 𝑈𝑖. The summation is over all atoms in the simulation. The 
forces can be obtained by taking the derivatives of 𝑈𝑡𝑜𝑡 with respect to 
the atomic coordinates.

The Tadah! software supports multiple types of descriptors and re

gression methods, as well as the ability to construct composite descrip

tors. This section provides a brief overview of the theory behind MLIPs. 
The features unique to Tadah! are discussed in more detail. In particu

lar, we present the generalized form of the descriptor vectors currently 



Computer Physics Communications 315 (2025) 109701

3

M. Kirsz, A. Daramola, A. Hermann et al. 

Fig. 1. Local atomic environment of atom 𝑖. The atom 𝑗 is considered as within 
the local environment of atom 𝑖 if the separation between atoms is within user 
defined cutoff distance 𝑟𝑐 .

supported by Tadah! and the semi-automated nested fitting procedure 
designed to reduce manual effort during model parametrization and im

prove transferability.

2.1. Parameters

Both  and (𝐝𝑖) are functions.1 They contain two types of param

eters, Learned parameters (LPs) which are optimised in the training pro

cess (e.g. regression coefficients) and hyperparameters (HPs) which are 
not (e.g. cutoffs, and even the length of the descriptor vector). Tadah! 
offers an external loop which can optimise the hyperparameters either 
to improve the fitting, or to optimise some emergent property such as 
equation of state.

2.2. Generalised descriptor

The descriptor vector (𝐝) captures information about the local 
atomic environment of an atom. To construct 𝐝, we first define a set 
of hyperparameters that specify its functional form. Note that vector 
component 𝐝(𝑝) of 𝐝 may have the same functional form with a different 
set of HPs.

For example, one can construct a simple Lennard-Jones type de

scriptor with two vector components, corresponding to attraction and 
repulsion respectively, and consider the exponents of particle separa

tion 𝑟 as the following sets of hyperparameters: {−6}0 and {−12}1. 
Additional examples may include descriptors that use Gaussian func

tions, where hyperparameters might define the width and position of 
the Gaussians. Chemical species-dependent weights can also be used to 
tailor the descriptor for specific interactions, enhancing its sensitivity to 
the chemical composition of the environment.

The Tadah! software supports two- and many-body types of descrip

tors. The specific angular type descriptor is omitted, as three-body in

teractions can generally be incorporated into a many-body format. This 
approach avoids the cost associated with the computation of angular 
descriptors [19]. The list of currently supported types of descriptors is 
available in online documentation [20].

2.2.1. Two-body components in the descriptor

The simplest form of component in the descriptor is a two-body func

tional form. It is motivated by the idea that the energy depends on 
pairwise interactions between atoms. A two-body 𝑝-th component of 
the descriptor of the 𝑖-th atom is

𝐝(𝑝)
𝑖

=
∑
𝑗≠𝑖 

𝐵{𝜁}𝑝 (𝑟𝑖𝑗 )𝑓
{𝜁}𝑝
𝑐 (𝑟𝑖𝑗 ) (2)

where 𝐵 is a descriptor specific function with a set of hyperparameters 
{𝜁}𝑝, 𝑓𝑐 is a cutoff function which ensures that energy goes smoothly to 

1 Strictly,  is a functional and (𝐝𝑖) is a vector of functions.

zero at the cutoff distance, and 𝑟𝑖𝑗 is a separation between 𝑖 and 𝑗 atoms. 
The summation is over all neighbours of central atom 𝑖 which are within 
𝑟𝑐 . Note that 𝑟𝑐 is included in the {𝜁}𝑝 subset of hyper parameters as it 
might be required by the 𝐵 functions as well.

2.2.2. Many-body components of the descriptor

The many-body descriptors of the 𝑖-th atom are motivated by the idea 
that the energy depends on the local density. They satisfy the following 
form

𝐝(𝑝)
𝑖

={𝜁}𝑝
(
𝝆
{𝜁}𝑝
𝑖

)
(3)

where the vector of atomic density 𝝆𝑖 of the 𝑖-th atom is built by ex

panding the density using the basis set of choice.

𝝆
{𝜁}𝑝
𝑖

=
(∑

𝑗

𝜓
{𝜁}𝑝
1 (𝐫𝑖𝑗 ),… ,

∑
𝑗

𝜓
{𝜁}𝑝
𝑚𝑎𝑥 (𝐫𝑖𝑗 )

)
(4)

For linear regression, the functional  in eq. (3) must ensure in

variance under permutations of atoms of the same species, as well as 
inversion, translation, and rotation of the system. In principle, these in

variances can also be incorporated into a custom non-linear model.

2.2.3. Composite descriptors

Tadah! offers the flexibility to incorporate physical insights into the 
modelling process by choosing the physical functional forms of the de

scriptor components. These multiple components are combined into a 
single, unified custom descriptor vector, referred to as a composite de

scriptor (Fig. 2). This approach allows for a more nuanced representa

tion of the system’s interactions. Each constituent descriptor within this 
composite can be further tailored by specifying a unique cutoff func

tion and an interaction distance, enhancing the precision and relevance 
of the model. Furthermore, it is possible to define particular chemical 
species pairs that each constituent descriptor will target. This capability 
enables the creation of highly specific interactions, ensuring the model 
accurately reflects the complex dynamics of the system being studied. 
By leveraging these features, models can be developed that are not only 
highly customized but also deeply informed by domain-specific knowl

edge.

2.3. Regression

Tadah! uses the regularized form of the normal equation during the 
regression stage to find the optimal parameters that minimize the error 
between predicted and actual data:

𝐰 = (𝐗𝑇𝐗+ 𝜆𝐈)−1𝐗𝑇 𝐭 (5)

where 𝐰 is the optimized weight vector, 𝐗 is the design matrix which 
is constructed using descriptor vectors, 𝐭 is the target vector consisting 
of energies, forces, and stresses, 𝜆 is the regularization parameter, and 
𝐈 is the identity matrix. This closed-form solution is equivalent to mini

mizing the loss function, defined as the sum of squared errors, with the 
advantage of being exact.

An evidence approximation algorithm is used to estimate 𝜆, which 
helps prevent model overfitting by shrinking the weights. Users also 
have the option to select this term manually. Models regularized with 
this approach may exhibit higher bias on training data but achieve lower 
variance and better accuracy on test data.

Tadah! currently supports two regression methods: Bayesian Linear 
Regression (BLR) and Kernel Ridge Regression (KRR) [21]. The key dif

ference between KRR and BLR lies in the computation of the design 
matrix 𝐗. Once constructed, both methods apply regularized linear re

gression (eq. (5)). For KRR, the design matrix 𝐗 is replaced by the sparse 
kernel matrix 𝐊, constructed using a kernel function 𝑘(𝐱𝑖,𝐱𝑗 ). Here, the 
index 𝑖 goes over all descriptors in the training dataset, while index 𝑗
goes over all preselected basis vectors. For BLR, each row of 𝐗 is post

processed with the basis function of choice, resulting in the Φ matrix. 
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Fig. 2. A schematic representation of the composite descriptor (top) and a sample configuration snippet (bottom) illustrating how it is defined in Tadah!. Parameter 
values are illustrative and not physically meaningful. A and B here are placeholders for actual chemical species. Additional descriptors can be appended as needed.

For both algorithms, the design matrix can include descriptor vectors 
for structural potential energies and optionally for forces and stresses. 
Various kernel types and basis functions are supported. For details, refer 
to the online documentation [20].

In BLR, regression is framed as a probabilistic model, allowing for 
robust predictions that incorporate uncertainty. BLR assumes a prior 
distribution over the weight vector 𝐰. The model updates this prior to 
a posterior distribution based on the observed data. This approach not 
only predicts outputs but also provides a measure of uncertainty for 
predictions, which is valuable for assessing model confidence.

Our KRR implementation leverages the Empirical Kernel Map (EKM) 
[22], enabling the processing of large datasets and producing sparse 
outputs. EKM kernelizes algorithms that use vectors by projecting new 
vectors into a feature space defined by basis vectors and a kernel func

tion. This allows standard (not kernalized) algorithms to operate with

out modifications. Tadah! provides several tools for selecting a suitable 
set of basis descriptor vectors, such as simple random selection or recur

sive finding of linearly independent vectors in a kernel space [23,24]. 
Thanks to EKM, tools from BLR can be applied to the sparse matrix 𝐊, 
allowing for the prediction of errors and uncertainty estimation in the 
model.

2.4. Nested fitting procedure

One of the major challenges for MLIPs is their poor transferability 
beyond the training dataset. Tadah! addresses this by incorporating a 
hyperparameter optimization cycle. Unlike standard approaches that 
primarily fit forces and energies, Tadah! employs an iterative procedure 
to generate ``trial'' potentials with varying hyperparameters. These are 
applied via LAMMPS to evaluate macroscopic properties, fitting them to 
theoretical or experimental data. The best-performing2 combination of 
descriptors and kernels are chosen resulting in increased performance, 
transferability, and applicability.

2 Either in terms of the fit to training data, execution speed, or a custom user

defined metric.

In developing MLIPs, both LPs and HPs are crucial. The model archi

tecture, including the choice of ML algorithm and descriptors, reflects 
prior knowledge and is fine-tuned through HP optimization. The global 
objective function, known as the evaluation function in ML literature, 
plays a central role.

The aim of HP optimization is to minimize the global loss function 
(, ), which is a common choice for a global objective function, 
where  is the model and  is the training dataset.

𝜃∗ = argmin
𝜃∈Θ 

(, ) (6)

Here, the model is parameterized by a set of HPs 𝜃, and the goal is 
to find the 𝜃∗ which minimize (, ) within a search space Θ.

HP optimization differs from other optimization problems. While it 
is theoretically possible to obtain the gradient of the loss function with 
respect to the HPs, in practice, this is rare due to discontinuities or non

differentiable search surfaces. Care must be taken to avoid overfitting 
HPs to a particular dataset, as different datasets may require different 
optimal HP values.

In general, MLIPs achieve high accuracy for constructing PES for 
local atomic configurations similar to training data, owing to using 
generic functions with numerous free parameters. Traditional MLIP 
model development involves adjusting HPs during manual iterative 
training and validation, followed by final testing. This approach is sim

plistic, resource-intensive and time-consuming.

The Tadah! global loss function (GLF) is defined as:

𝑔(, ) =
∑
𝛼

𝜔𝛼𝛼(, ) (7)

In this equation, 𝛼 represents the model error associated with the 
𝛼𝑡ℎ constraint, and the 𝜔𝛼 are weighting parameters that indicate the im

portance of 𝛼 in the fitting procedure. Tadah! provides several different 
loss functions. The simplest constraint loss function takes the following 
form:

𝛼(, ) = |||𝛼(, ) − 𝑡𝛼
|||
𝑁

(8)
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Fig. 3. The hyperparameter optimization routine as implemented in Tadah!. The MLIP development starts with constructing a DFT dataset. Users can employ existing 
datasets or build new ones using external tools. The training stage involves sampling from the DFT data to create a training dataset with the Tadah!MLIP toolkit. Next, 
the MLIP developer defines the model and selects which HPs to optimize, along with setting appropriate search space and performance constraints. Once configured, 
the automated optimization process begins, generating ``trial'' potentials and evaluating them against PCs. Upon completion, the MLIP candidate can be manually 
evaluated by the developer before being distributed to MD users. Tadah!LAMMPS is an independent plugin of Tadah!MLIP and is required to run MD simulations 
with the final MLIP.

Here, 𝛼 denotes the prediction for the 𝛼𝑡ℎ constraint, with 𝑡𝛼 as the 
target value. The power 𝑁 determines the type of loss function: setting 
𝑁 = 1 results in an absolute loss, while 𝑁 = 2 yields the commonly used 
quadratic loss function.

The weight factor 𝜔𝛼 has units of the corresponding constraint 𝛼
raised to the 𝑁𝑡ℎ power. This ensures that the product in eq. (7) is unit

less. The interpretation of the weighting parameters is intuitive—they 
control the numerical precision of the obtained loss for a given 𝛼 relative 
to other weights. For example, doubling a weight makes its associated 
constraint twice as important as before.

The GLF evaluates the model’s performance not just on the valida

tion set but also by incorporating performance constraints (PC) on the 
model’s physical predictions. These constraints enhance the predictive 
power of the interatomic potential. PCs can be divided into two types: 
the RMSE fit to target vector t (eq. (5)), and those that are physically 
motivated, such as the model’s ability to reproduce specific surface en

ergies or energy differences between crystal structures. Tadah! provides 
a flexible interface that allows users to use custom LAMMPS scripts to 
evaluate the PCs of their choice.

In contrast, search space constraints (SSC) define the configurational 
space for HPs, which the optimization algorithm explores to satisfy the 
PCs. SSCs are applied more directly to the model’s architecture, influenc

ing parameters like the positions and widths of Gaussians in a descriptor 
or a cutoff distance.

The global optimization algorithm (GOA), as illustrated in Fig. 3, 
works iteratively to optimize model architecture with respect to training 
data, validation sets, search space, and performance constraints. The 
training and validation data sets are constructed by the user and remain 
unchanged throughout the process, as Tadah! currently lacks tools for 
automating this step. The success of the potential depends on the quality 
of the training data and Tadah! allows the user to tune the training data 
to their intended application. The primary goal of the GOA is to enhance 
model architecture and, consequently, its transferability.

Optimization begins by defining target PCs and SSCs in a configura

tion file, where the user assigns a weight to each PC indicating its im

portance. The automated iterative process involves: selecting candidate 
HPs from SSCs, training the model with new settings, and evaluating 

performance against PCs. This cycle repeats until convergence criteria, 
like a specific GLF value, are met, or until manually stopped. The po

tential is refined through both changes in HPs and values of 𝐰 (Fig. 3
and Fig. 4).

The HP selection process is managed by the MaxLIPO+TR algorithm 
from the Dlib C++ library [24]. An enhancement of the original LIPO 
algorithm [25], it estimates the Lipschitz constant to construct an upper 
bound to the objective function, optimizing towards a global maximum. 
It evaluates points randomly, comparing their upper bounds to find im

provements. To address slow convergence near optima, it employs a 
trust region method (+TR), assuming a quadratic surface to swiftly con

verge on local optima [26,27]. Tadah! also supports multiple global and 
local optimizers from the NLopt library [28].

3. Implementation

The Tadah! code is open-source and implemented in C++. Developed 
using Git, it promotes collaboration through a modular structure (see 
Fig. 5). The software consists of six independent modules that support 
the user-facing components, Tadah!MLIP and Tadah!LAMMPS, enabling 
efficient code reuse. To enable flexible usage as a stand-alone library, it 
employs generic programming techniques, like class templates, provid

ing compile-time polymorphism for efficient and reusable components.

For command-line interfaces and the LAMMPS plugin, which require 
run-time polymorphism, Tadah! uses a factory method design pattern. 
This approach allows for selecting model components based on configu

ration files, combining compile-time efficiency with run-time flexibility. 
The object-oriented design focuses on performance, using shallow ab

straction layers for critical functionalities like descriptor computation 
to maintain efficiency. API documentation is generated with Doxygen 
and published online on ReadtheDocs for easy access [20].

Our software development focused on robustness; unit, functional 
and integration tests are supported by GitLab continuous integration and 
continuous delivery (CI/CD) to automate processes, catch bugs early, 
and ensure compatibility with new LAMMPS versions. This approach 
enables rapid, reliable software releases and simplifies collaboration and 
the addition of new features.
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Fig. 4. A sample configuration file used by the Nested Fitting Procedure, highlighting how performance constraints (PCs) can be integrated. The ERMSE keyword 
illustrates a basic constraint on the energy RMSE. Additional physics-based constraints can be incorporated via custom LAMMPS scripts, as shown by the LAMMPS -
script line. Here, the variable lata_loss is defined in a separate script (in.lata) to assess how closely the model reproduces certain macroscopic properties (e.g., 
lattice constants at a given pressure). By adjusting search space constraints (OPTIM entries) and assigning weights to different PCs, users can tailor the optimization 
to specific applications and balance trade-offs between accuracy, speed, and other desired criteria.

Fig. 5. The Tadah! codebase is written in object-oriented C++ and consists of six 
independent modules, combined to create two user-facing modules. Tadah!MLIP 
is designed for training and optimizing MLIPs, while Tadah!LAMMPS deploys 
them in the MD setting. This modular approach enhances performance, code 
reusability, and reduces maintenance.

Tadah!MLIP can be compiled on desktops and high-performance 
computing (HPC) facilities. The desktop version is parallelized with 
OpenMP and can handle datasets of tens of thousands of configurations. 
For more demanding tasks, the MPI version, specifically designed for 
HPC architectures, fully parallelizes descriptor computation and regres

sion using an MPI host-client design pattern, managing extremely large 
datasets necessary for accurate MLIP parameterization.

3.1. Dependencies and availability

The software is available under the GPLv3 license from https://git.

ecdf.ed.ac.uk/tadah, and the online documentation is hosted at https://

tadah.readthedocs.io. The LAMMPS interface and Tadah!MLIP toolkit 
require C++11 and C++17 compatible compilers, respectively. The code 
has been successfully deployed on a range of Linux architectures, from 
desktop versions like Alpine or Ubuntu to the HPE Cray Linux Envi

ronment, as well as macOS. Fortran routines from LAPACK [29] and 

ScaLAPACK [30] (for the Tadah! MPI version only) must be available on 
the user’s system. Tadah! utilizes CMake for configuration and building 
of its components. Git and an internet connection are required during 
the installation process.

The code has not been tested on Windows; however, we expect the 
LAMMPS plugin to be compatible. For Windows users, we recommend 
compiling either Tadah!MLIP or Tadah!LAMMPS using a Linux virtual 
machine.

The software employs several popular libraries such as Dlib [24], 
Boost, toml11, and CLI11, which are either contained within the Tadah! 
codebase or automatically downloaded and configured during the in

stallation process when needed for a build.

4. Typical usage

4.1. Using Tadah! potentials

Many users are primarily interested in utilizing pre-trained poten

tials rather than developing them. For this purpose, the Tadah!LAMMPS 
plugin is all they need, as it allows these potentials to be seamlessly in

tegrated with LAMMPS like any other interatomic potential. The poten

tials are distributed as ASCII files and are generated by the Tadah!MLIP 
software.

To use this feature, users must git clone the LAMMPS plugin 
from the Tadah! repository into the lammps/lib directory. The re

maining compilation process is straightforward and follows the standard 
LAMMPS library and package installation procedures. For detailed steps, 
refer to the Tadah! documentation [20]. Once compiled, users can in

voke Tadah! potentials using the standard LAMMPS syntax:

pair_style tadah
pair_coeff * * pot.tadah ELEMENT1 ELEMENT2

where, pot.tadah is the filename of the interatomic potential.

4.2. MLIPs development toolkit

This section provides a brief overview of the Tadah!MLIP toolkit, de

signed specifically for the development of Machine Learning Interatomic 
Potentials (MLIPs). The primary entry point to Tadah! is the command

line program tadah, which offers various subcommands. These sub

commands may require simple configuration files to facilitate MLIPs 
development. For examples and detailed explanations, please refer to 
the online documentation [20].

Key subcommands include:

https://git.ecdf.ed.ac.uk/tadah
https://git.ecdf.ed.ac.uk/tadah
https://tadah.readthedocs.io
https://tadah.readthedocs.io
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data: Offers dataset manipulation functionalities such as joining, 
splitting, finding duplicate structures, and selecting subsets. train: Per

forms regression training on a given dataset. predict: Predicts energy, 
forces, and stresses. hpo: Conducts hyperparameter optimization and 
training using nested fitting procedure as described in 2.4. write: Dumps 
dataset configurations into formats like CASTEP .cell, VASP POSCAR, 
or LAMMPS data files. convert: Assists in extracting relevant data 
(atomic positions, energies and so on) from CASTEP (.md, .geom, or 
.castep) or VASP (OUTCAR or vasprun.xml) DFT calculations to con

struct training datasets. analysis: Provides utilities to plot and visualize 
cutoff functions, basis functions (such as Gaussians), and descriptors. 
properties: Computes the interaction energy between two atoms using 
a trained MLIP.

The CLI tools are well-documented and offer helpful descriptions 
when used with the -h or --help flags. For instance, tadah data 
-h provides guidance on dataset subcommands. Further documentation 
is available online.

5. Limitations

Tadah! does not support predefined bonds; hence, everything is 
treated as atomic and intramolecular bonding must be learned from the 
dataset. This means that bond breaking should be treated with extreme 
caution unless included in the training data. Tadah! also lacks schemes 
for incorporating long-distance interactions.

5.1. Ongoing development

Tadah! remains under development. The framework was designed to 
make it easy to implement enhancements.

Notably, neural networks are currently not supported but could be 
plugged in to replace the regression step. Implementing new descriptors 
such as 3-body, MACE or ACE that deviate from the functional forms of 
eq. (2) or eq. (3) will require modifications to the Tadah! codebase.

5.2. Applications

A range of applications are under way using the Tadah! code. As with 
all MLIPs, these are currently subject to a thorough testing for stability 
and transferability. To date, two Tadah! potentials have been published, 
one for krypton [31] and one for nitrogen [16,17]. These were both 
parameterized using high-quality coupled cluster quantum chemistry 
databases rather than DFT, and are designed for execution speed. Both 
have been initially applied to the fluid state and show excellent agree

ment with neutron scattering data. The krypton potential outperforms 
existing models for melt curve and equation of state calculations. The ni

trogen potential shows remarkable transferability, describing no fewer 
than seven crystal phases. Full details can be found in the cited refer

ences.
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