

Core Collapse Supernovae are...

- Some of the most powerful explosions in the Cosmos Some of the most scrutinised objects in the Universe
- Responsible for production of many heavy elements
- Responsible for shaping our local distribution of stars
- Until recently there was consensus on the basic mechanism (perhaps there still is...)
- The best simulations still don't (*) reliably explode
- Extremely complex

We need a good diagnostic

The Neutrino Mechanism

- Massive star (>8–10 M_{\odot})
- Stellar evolution \rightarrow onion-skin-like structure
- At maximum of BE/A, thermal support lost \rightarrow Collapse
 - Huge flux of neutrinos "re-energises" explosion
- Neutrino driven wind an excellent candidate site for the r-process

CCSN Simulation status

(Adapted from A. Burrows)

- Rapidly advancing field
- Consensus that the 'true' mechanism should not be 'marginal'
- Prompt shock ALWAYS fizzles
- 1D neutrino-driven model ALWAYS fizzles
- GR... makes no difference
- Improved neutrino physics... makes no difference
- EOS probably has no surprises
- All groups get the same results for all progenitors

CCSN Simulation status

(Adapted from A. Burrows)

- 2D/3D model are showing more promise
- Asymmetry looks like it is the key
 - Convection
 - 'Fingers'
- The asymmetry probably comes from <u>rotation</u>
 - 'Naturally' produces bi-polar explosions
 - Collapse amplifies rotation
 - Increases gain region
 - Reduces effective gravity
 - Likely explanation of pulsar kicks
 - Likely source of gravitational radiation
 - Possible role of g-wave acoustics

The Acoustic Mechanism

- 'New' mechanism: A. Burrows *et al.* (ApJ 640 (April 2006) 878-890)
- In-fall of matter on to the core induces strong gravity waves
- These set up acoustic oscillations a few hundred milliseconds after core collapse.
- Oscillations couple efficiently with the outer core/overlying material,
- Intense sound waves radiated.
- Appears to lead to robust explosion

Para	me	etric instability?
International Journal of High-Energy Physics CERRING COURTING Latest Issue Archive CNL Jobs Lind REGISTER NOW Register as a member of cerncourier.com and get full access to all features of the site. Registration is free.	ks Buyer's guide W CERN COURT Nov 23, 2011 Scalar field A new compose	Sign in Porgotten your password Sign up CHNOL OO LEADERSHIP EVEND LOON PUMP EVENTS CONTROLLER Chite papers Events Contact us Search
RELATED PRODUCTS MEGA Industries, LLC – Announces New Distributor For Taiwan: Mega Industries LLC Dec 21, 2011	gravitational f mechanism th explosions of place. Howev through a dyr instability – t Lord Rayleigh	Physics Letters B 705 (2011) 148–151 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb
		Parametric instability induced scalar gravitational waves from a model pulsating neutron star Charles HT. Wang ^{a,b} , Paolo M. Bonifacio ^{a,*} , Robert Bingham ^{b,c} , J. Tito Mendonça ^{d,b} ^a SUPA Department of Physics, University of Aberdeen, King's College, Aberdeen AB24 3UE, UK ^b STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK ^c SUPA Department of Physics, University of Strathclyde, Glasgow G4 ONG, UK ^d GOLP/Centro de Física de Plasmas, Instituto Superior Técnico, 1049-001 Lisboa, Portugal

The Importance of ⁴⁴Ti

- ⁴⁴Ti that is ejected will become a γ-ray emitter
- Cassiopeia-A, Vela, not SN1987A
- **τ**=60 yrs, E_{γ} =1.157 MeV
- 'Easily' observable
- INTEGRAL & other missions
- Also Meteoritic data
- Enrichment of ⁴⁴Ca in type X presolar grains

NuSTAR (the 'other' one)

Hard X-ray imager 6-80 keV

~NASA version of ESAs GRI (UK: Tony Bird, Bruce Swinyard, ASM)

LAUNCH: 14th March 2012, 8am

The Importance of ⁴⁴Ti

- Amount ejected sensitively depends on location of the 'mass cut'
 Material that 'falls back' is not available for detection
 - ⁴⁴Ti yield a sensitive diagnostic of the explosion mechanism
 - Thus, very useful for models to make comparisons against

The KEY Question

Could a measurement of ⁴⁴Ti gamma rays be a diagnostic of the underlying explosion mechanism?

Do the different explosion mechanisms affect the location of the mass cut?

- "there should be some interesting differences on average between the predictions/expectations of the various mechanisms (neutrino, acoustic, magnetic, etc.), we have yet truly to determine these."
 Adam Burrows, Princeton, Jan 2012
- "By accident we noticed e.g. in simple parametrized explosions with the same explosion energy, that pistons (like used by Woosley and Heger) produce less ⁴⁴Ti than thermal bombs (like used by Nomoto, myself, Umeda). The point is just that in the innermost ejecta the entropies are higher."

Friedel Thielemann, Basel, Jan 2012

Key Reactions

Reaction rate sensitivity studies: *The et al*: ApJ 504 (1998) 500 *Magkotsios et al*: APJS 191 (2010) 66

- Papers agree, ⁴⁴Ti(α,p) most important reaction
- Importance stems from it being the bottle neck in reaction flow as material drops out of QSE

Order of Importance of Reactions Producing 44 Ti at $\eta = 0^{a}$

B an atline	C1		
Reaction	Slope		
44 Ti(α , <i>p</i>) 47 V	-0.394		
$\alpha(2\alpha, \gamma)^{12}$ C	+0.386		
$^{45}V(p, \gamma)^{46}Cr$	-0.361		
$^{40}Ca(\alpha, \gamma)^{44}Ti$	+0.137		
57 Co(<i>p</i> , <i>n</i>) 57 Ni	+0.102		
${}^{36}\text{Ar}(\alpha, p){}^{39}\text{K}$	+0.037		
$^{44}\text{Ti}(\alpha, \gamma)^{48}\text{Cr}$	-0.024		
${}^{12}C(\alpha, \gamma){}^{16}O$	-0.017		
${}^{57}Ni(p, \gamma){}^{58}Cu$	+0.013		
${}^{58}Cu(p, \gamma){}^{59}Zn$	+0.011		
${}^{36}Ar(\alpha, \gamma){}^{40}Ca$	+0.008		
$^{44}\text{Ti}(p, \gamma)^{45}\text{V}\dots$	-0.005		
57 Co(p, γ) 58 Ni	+0.002		
57 Ni (n, γ) 58 Cu	+0.002		
54 Fe(α , <i>n</i>) 57 Ni	+0.002		
${}^{40}Ca(\alpha, p){}^{43}Sc$	-0.002		

^a Order of importance of reactions producing ⁴⁴Ti at $\eta = 0$ according to the slope of $X(^{44}\text{Ti})$ near the standard reaction rates.

⁴⁴Ti(α ,p) Present status

- Astrophysical region is 3-6 MeV
- *Hoffman et al*. APJ 715 (2010) 1383
 - New evaluation of ⁴⁴Ti(α,p) reaction rate
 - Conclude that ⁴⁴Ti(α,p) uncertainty has been underestimated (x3)
- Sonzogni compared to SMOKER
- NON-SMOKER provides significant update

Data achieved with $\sim 10^5$ pps on target

⁴⁴Ti(α ,p) Reaction Rates

SMOKER \rightarrow NONSMOKER: ⁴⁴Ti(α ,p) little effect ⁴⁴Ti(p, γ) major effect

⁴⁴Ti(α ,p) Reaction Rates NON-SMOKER includes better treatment of isospin suppression for alpha-capture reactions on N = Z nuclei Vockenhuber *et al.* states that ${}^{44}\text{Ti}(\alpha,p)$ NON-SMOKER rate is 100x smaller than SMOKER rate [J. Phys G: Nucl. Part. Phys. 35(2008)] Rauscher [priv. comm.] says this is in error. Only a factor of 20. Consequences if ⁴⁴Ti(α , γ) rate > ⁴⁴Ti(α ,p) rate

Direct measurement of ${}^{44}\text{Ti}(\alpha,p)$ at astrophysical energies

Sonzogni made their own ⁴⁴Ti via ⁴⁵Sc(p,2n)⁴⁴Ti.

- about 4x10¹⁵ atoms were used
- Priv. Comm.: Sonzogni approach has limited further capability
- Production of a ⁴⁴Ti target is viable: Daniel Bemmerer leads; Timescale 'few years'.
- Production of a ⁴⁴Ti ISOL beam is viable: beam development at GANIL, TRIUMF. Timescale is 'few years'
- Production of offline ⁴⁴Ti beam... this proposal

Beam request for ISOLDE 2012

April 2 to December 2, 2012

PLEASE COMPLETE ALL INFORMATION REQUESTED AND RETURN BY JANUARY 30, 2012

Experiment IS544

Measurement of the 44Ti(alpha,p)47V reaction cross section, of relevance to gamma-ray

observation of core collapse supernovae, using reclaimed 44Ti

Spokesperson: A. Murphy

Total shifts approved: 28

Shifts used in 2011: 0

Remaining shifts: 28 (if shifts requested in January 2012 are approved)

ERAWAST

Exotic Radionuclides from Accelerator Waste for Science and Technology

- A project to utilise long lived activity generated in PSI beam dumps
- Copper beam bumps, exposed to 1.5mA protons for ~12 years, dismantled ~15 years ago.
- ²⁶Al, ⁵⁹Ni, ⁵³Mn, ⁶⁰Fe or ⁴⁴Ti have been separated.
- SINQ facility material also available: other isotopes, e.g. ¹⁸²Hf

Applications: Nuclear physics, nuclear astrophysics, Geophysics, Radiopharmacy, AMS, RIMS,...

⁴⁴Ti availability

"The bottom line on the ⁴⁴Ti is that there is more of it than we are going to know what to do with. They have actually stopped processing the copper beam dump because they have been having a lot more luck with stainless steel test samples that were put in their SINQ facility (spallation neutron source). These samples have the added benefit that no ⁶⁰Co is produced, so they don't have to wait very long before they can handle the material.

"They have determined that they have <u>300MBq</u> of ⁴⁴Ti in the samples produced to-date, and there are more experiments yet to be run. There are also tests on V-metal and V+Ti-metal and each of these samples is expected to contain <u>500MBq</u> of ⁴⁴Ti. There is plenty to share with the ⁴⁴Ti target experiment, and the medical people have moved on and are now producing their own. <u>The only</u> <u>limits for how much ⁴⁴Ti we can use to produce a beam will be</u> <u>set by the safety people."</u>

Jennifer Fallis, 6/9/2011

⁴⁴Ti Beam Production

- Development ongoing at ISOLDE, TRIUMF and GANIL
- 1 week at 10⁵ pps is about 10¹² ions
- With 10¹⁸ ions, 0.0001 total is efficiency required for a significantly improved measurement
 - ⁴⁴TiF₄ deposited on Ta foil
- FEBIAD ion source; extract TiF₃⁺ molecules
- Accelerate, dissociate molecule, accelerate ⁴⁴Ti⁴⁺ ions
- Expected efficiency... ~0.1 1%

Table 1: Summary of expected rates of events.

Beam energy ¹	CM Energy ²	Efficiency	Cross section ³	Rate	Rate	Rate
(MeV/u)	(MeV)	(%)	(mb)	(\min^{-1})	$(hour^{-1})$	(day^{-1})
1.41	3.0	19.2	0.004	0.005	0.29	9
1.67	4.0	18.9	0.1	0.16	9.5	229
1.93	5.0	18.6	2.0	3.1	187	4500

¹Beam energy to be supplied by ISOLDE.

²Centre of mass energy for ⁴⁴Ti(α ,p) reactions at the start of the gas cell.

³Estimated by extrapolation of Sonzogni *et al.*.

Scheduling

⁴⁴Ti ions are available 'now'

- Experimental apparatus (gas cell, silicon, DAQ) is available now
- Gas cell windows, vacuum chamber need a little work
 - Monte Carlo optimisation is ongoing
 - Experimental team is already sufficient (additional collaborators welcome)
- Safety situation?
 - Assessment of measures required to prevent activation?
 - Window of opportunity during CERN 'shutdown year'?
 - We have strong support of ISOLDE team

