DARK MATTER

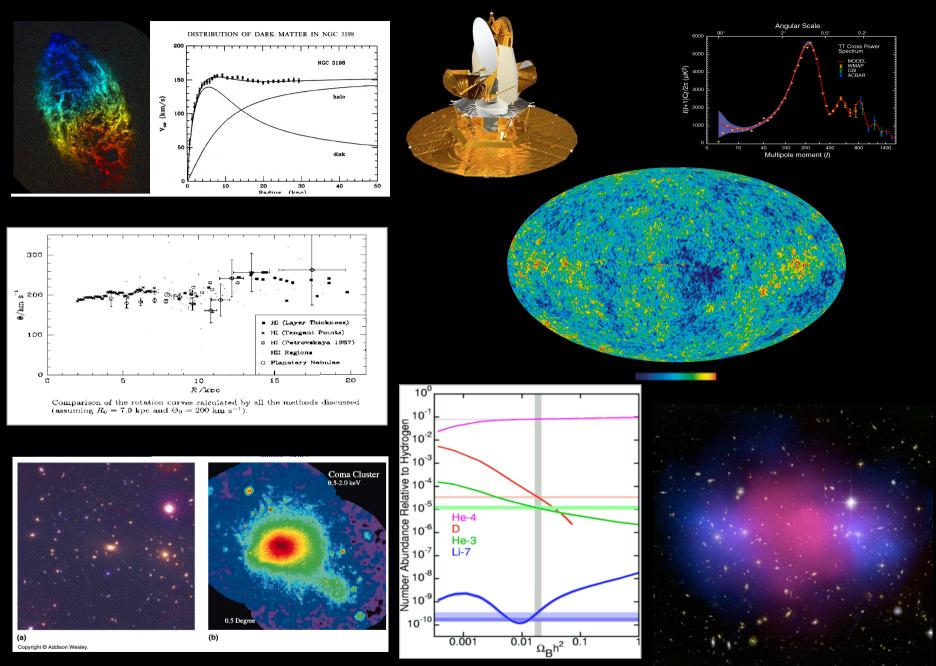
and the use of

Social Media in an Unsocial Environment

First... some science

Fritz Zwicky

Early evidence for Dark Matter


- 1: 1933: Looked at Galaxy clusters
 - 2. Observed their motion

3: Applied the laws of physics that we know

4: Deduced that there must be more mass present than is seen

So what is this Dark Matter

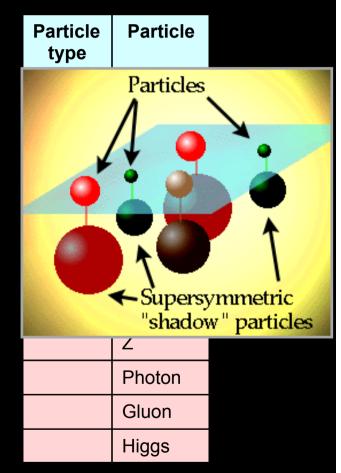
Where did it come from?

Particle Physics to the Rescue

The 'Standard Model'

Fundamental particles: Electrons, quarks, gluons... Fundamental forces: Electromagnetic, weak, strong

Works very very well at saying 'HOW'

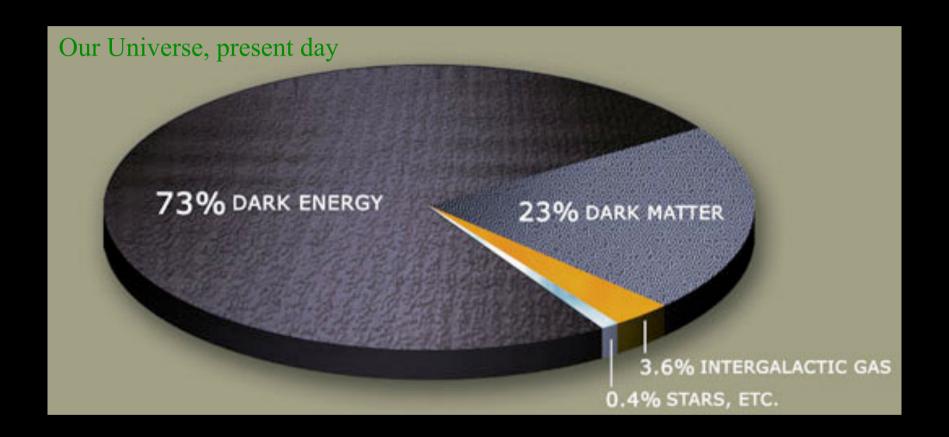

But it doesn't really answer 'WHY?'

But there is a theory that does!

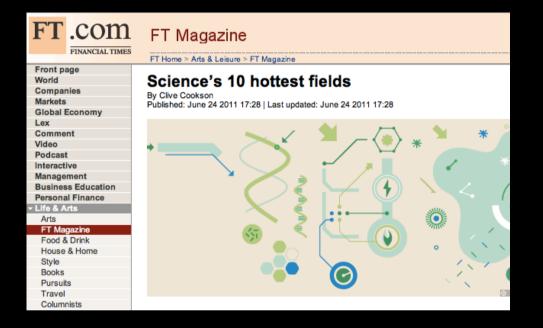
<u>SUPERSYMMETRY</u>

SUBERSXWMEIRX

- Explains why we see the range of particles and forces that we do
- Predicts more particles we have yet to see
- The lightest of these, the WIMP, has just the right properties to be dark matter
- Would have been made in the Big Bang; stable; big influence on cosmology
- It's an <u>independent</u> prediction!



<u>Conclusion</u>: There is more matter out there than we can see in stars, planets etc.


This 'dark matter' is fundamentally different to normal matter

We have theories of what this stuff might be, but its never been seen

Summing it all up

How important is this???

24 June 2011

- Understanding the genome
- Extra planets and extraterrestrials
- The composition of the universe - dark matter and dark energy
- Leap for quantum computing
- Graphene, the wonder material
- Embryonic stem cells and regenerative medicine
- Global warming
- Plants to feed the world
- The 'plastic' brain
- Disaster management

The Challenge

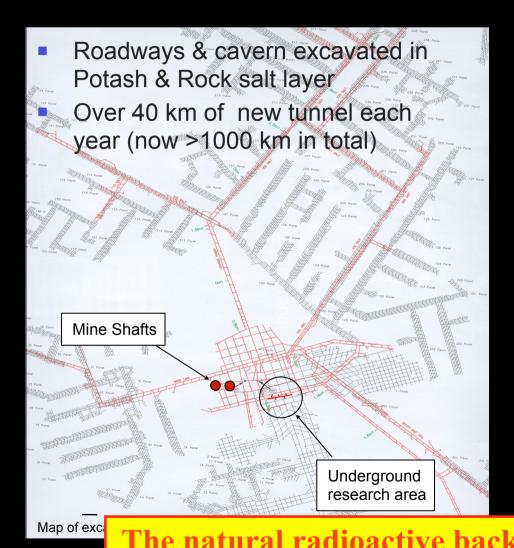
WIMP-like DM hypothesis...

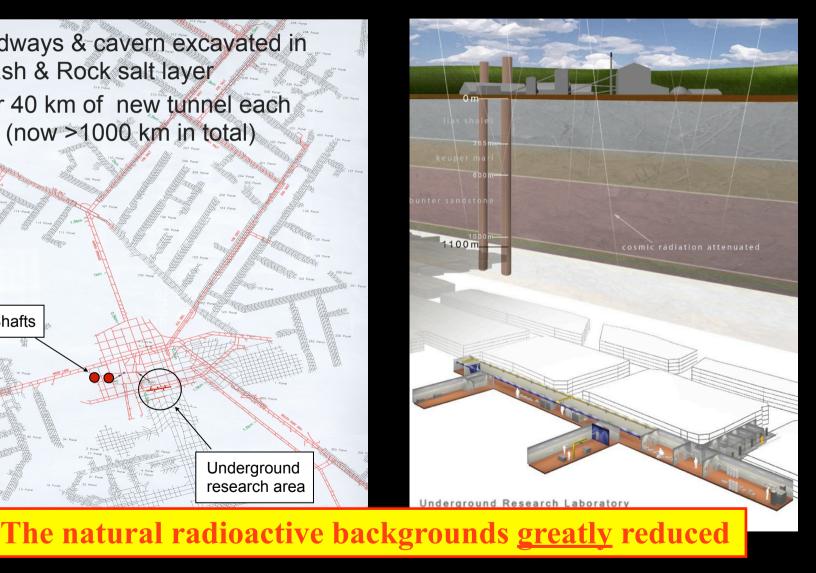
 Earth should be passing through a halo of weakly interacting massive particles

We search for the rare collisions of WIMPs with normal matter here on Earth.

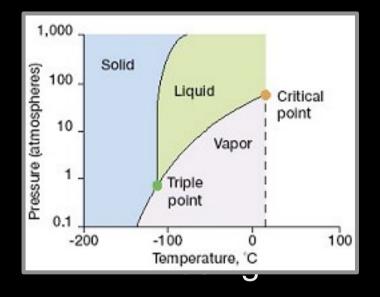
Basic method

Make a device that should see *nothing* from normal physics


And see if there's anything still there...


WHERE SHALL WE SEARCH?

The Boulby Mine - A very dark place!


An active salt and potash mine

The nature of the beast

- High voltages (up to 17kV)
- Liquid xenon
 - Requires fine temperature control
 - Potential for explosive release
- ~30 slow control readings monitored and logged

- ~120 channels of data reading out 20 us timelines at 10 ns sampling, at ~1/2 Hz, 23 hours a day, 320 days continuous operation (c. 100s Tb)
- Daily automated calibration radioactive source
- Located in a salt mine 'fluid' surroundings

The harsh and remote environment

- Minimum 4 hours from IC or Edinburgh
- Access to u/g lab takes at least another hour
- Environment is hot, dry, dusty... tiring
 Detectors housed in separated clean-room
- Subsistence costs ~£100/day
- Inherently hazardous safety is paramount
- Constant monitoring and adjustments necessary

Monitoring via the Web

NASDAq DRIFT Watch

20 2011 14-10-02 UTC /15-10-02

	30	in 29 20	0111149	19R0	3 UTC	(15:19:03 Local,	+1:00)
Detector Crate drift2d 1 Log Archive	Slow Fast okay runnin Disk Space			Drop	dd 📑	Watc User Daniel Walker E-mail Daniel.Walker Text Clear Set	@Sheffield.ac.uk
Gas System	Slow Con				nel 🛃		st, Waveform Acquisition
Vessel	Gas Mixer: 7 Pressure 39.9993 Torr 193.584 Torr	Target 40 Torr	Minimum 39.9 Torr				Configure 🔎 Rate Limit 💽 Stop 💼 Waveform Plotter Rate Plotter running
	e) ⇒ Mix. Cyl. Gas 2 (CF ₄) Closed	⇒Supply Closed	➡Vesse 11% / 1			Trigger Rate Rate Limits Range	norm 1.3989 Hz 0 5 Hz ±1.25 V
Channel	Analog In Reading	Limit				Trigger Mode Write Rate Left Trigger Rate	wire 1.36338 Hz 0.596246 Hz
CS_2 Weight	14.0713 kg -53.7443 uA	<11.5 <-55	+	2		Right Trigger Rate Run File Name	0.802658 Hz 20110629-02 drift2d-20110629-02-0003-wimp.ndd
HHV Voltage Left Grid Current	35.4805 kV -9.32081 uA	<-9.5	+	8		Run Time Run Live Time	1h 13m 27s (4407 s) 1h 6m 28s (3988.52 s)
Left Grid Voltage MFC1 Flow	2.85088 kV 3.86083 V		4	2		Cycle Time Cycle Live Time Run Events	1h 7m 7s (4027 s) 1h 6m 8s (3968.52 s) 7072
MFC2 Flow MFC3 Flow	-0.00663463 \ 0.00406386 V		÷ •	2		Cycle Events Left Run Events Right Run Events	5072 3305 3767
MFC4 Flow MFC4 Set Point	0.534907 V 0.532161 V		4 4	r r		Left Cycle Events Right Cycle Events	2305 2767
PG1 Pressure PG2 Pressure	194.432 Torr 131.016 Torr	<139 <80	+ +	2		Comment	Background run, 2.84kV, 30-10 CS2-OF4, 1x flow
Right Grid Current Right Grid Voltage	-9.09754 uA 2.85102 kV	<-9.3	+	F F			
Vessel Pressure	40.0016 Torr	<39.9	+	P	-		

Vessel Temperature 61.1668 C

Monitoring via the Web

🗯 Safari File Edit View History Bookmarks Window	v Help	🛔 🍪 📿 🎓 📗 🕘 🕴 🖬 🖬 🖬 (3:04) Sun 09:00:04 Q
00	ZEPLIN III Real-Time Status as of 29 May 2011, 08:59	:29
Http://www2.ph.ed.ac.uk/nuclear/darkmatter	/zeplin3/indext.html	C 🖉 🦉 Google
Walk Z3SC Me Staff PAAP Google Maps ZEPLIN-III EAS	E GMaps JonB Blog e-Astronomer STFC Crisis Twi	tter Drift Watch
	ZEPLIN III Real-Time Status	

29 May 2011, 08:59:29 GMT

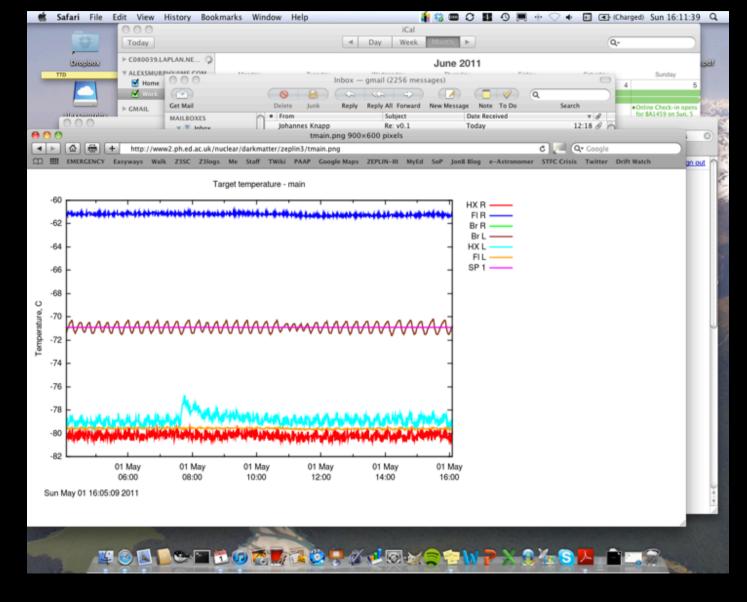
[DAQ/Veto] [SlowCon] [HV/Vac/Env] [Plots] [Sensor map] [Wiki] [Time machine] [Idiot's guide] [Calendar] [Dione webcam] [Titania webcam]

Team: CG(op.), CG, PAM

High Voltage

Quick Check

Parameter	Value	Range
TARC	-0.003	1.62 ± 0.01
LFS SP	-67.50	-70.5 ± 1.0
Br L	-67.00	SP ± 0.7
FIL	-77.01	-80.5 ± 0.5
Vacuum	1.23e-08	< 1.0e-7
Amb. T	28.60	26 ± 2


	Status	V	l I
Anode	\checkmark	-162.40	-52.14
Cathode	×	18430.00	117.63
PMT	\checkmark	900.00	4580.00

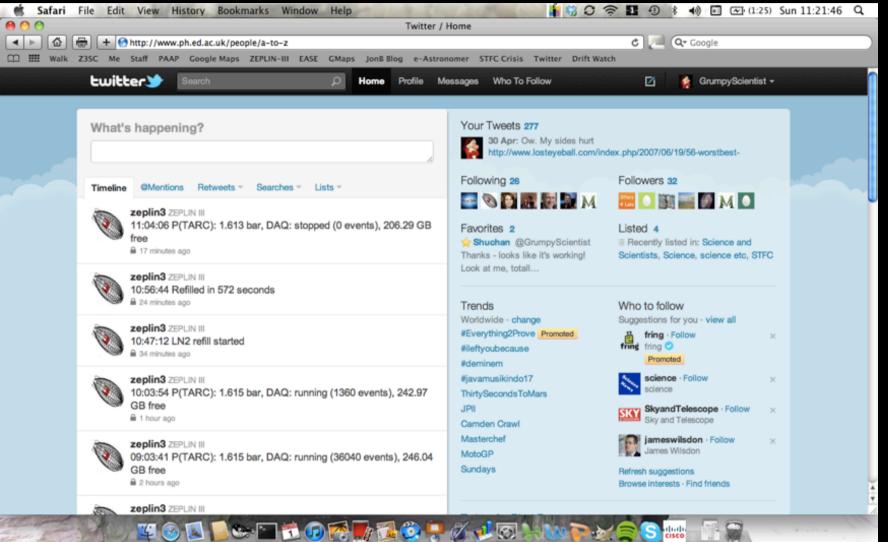
Z3 DAQ and Veto

	Status	Rate	Events	HDD Free
Z3 DAQ	running	0.33	31820	631.58
Veto	stopped	0.00	0	\$VF\$

🗳 🙆 💁 🗁 🗃 🗟 🕡 🏹 🚮 🖄 🌻 🎸 📣 🐼 🐎 We Press 🤤 S

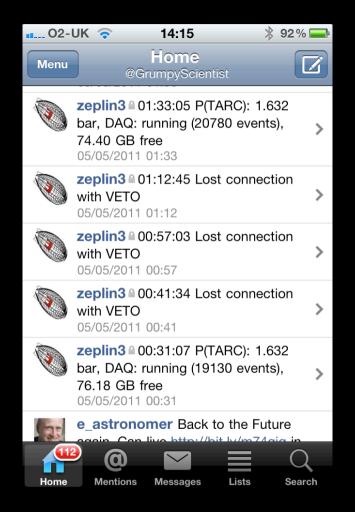
"Slow control"

Remote adjustments


- Xdisplay, Remote desktops, ssh, etc
- Can control voltage, temperature, data acquisition
- Site-wide power failures are a problem!
 - UPS power for ~ 8hours
 - When power comes back on, there's often things you don't want to re-start!
 - USB controlled power sockets

Network speed issues

- Link between surface and underground is fast
 - But has a high failure rate
 - Phone-line modem backup ('shutdown' signal)
- Link between the mine and civilisation is <u>slow</u>
 - Low bandwidth applications vital
 - e.g. Twitter feed
 - non-video skype


Data are sent to surface and written to tape/ usb disk, then physically transported to RAL

and on an iPhone*

02-	UK	?	14:15		k	92 %	
Menu		@0	Hom GrumpySc				
S	bar 79.						>
I	bar 81.			`	,		>
	bar 82.			`	,		>
	bar 86.			`	,		>
	app		Cox And , some t nith			h at	>
Home	3	(C) Mentions	Message	es	Lists	C Sea) rch

Key facts, 'anywhere', fast, reliable, useful formatting

*Other handheld mobile devices are available...

How did we do?

- Successful 320-day run.
- 'Fully' remote operation (1 morning/wk access to perform liquid nitrogen refill)
- 24hr monitoring somewhere in the world
- Stable operation within operating margins
 - 1 excursion due to 2 day site-wide power outage
- O health and safety occurrences
- Publication of world-class science result imminent (many publications already)

