

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of the ${}^{44}\text{Ti}(\alpha,\mathbf{p}){}^{47}\text{V}$ reaction cross section, of relevance to gamma-ray observation of core collapse supernovae, using reclaimed ${}^{44}\text{Ti}$.

January 6, 2012

Spokesperson: Alex Murphy Data Analysis: Vincent Margerin

Radioactive waste to probe core collapse supernovae

The case, in a nutshell...

- Core collapse Supernovae are exciting
- There remains fundamental uncertainty in the explosion mechanism
- Gamma-rays from ⁴⁴Ti decay are one of the few ways in which observational data could improve models
- Major recent space investment is likely to produce new observational data
- The main nuclear uncertainty is the $^{44}Ti(\alpha,p)$ reaction
- ⁴⁴Ti reclaimed from irradiated parts at PSI is now available
- A measurement at ISOLDE, dramatically reducing nuclear uncertainties, is now possible
- ...and was performed in Dec 2012!

Core Collapse Supernovae are...

- Some of the most powerful explosions in the Cosmos Some of the most scrutinised objects in the Universe
- Responsible for production of many heavy elements
- Responsible for shaping our local distribution of stars
- Until recently there was consensus on the basic mechanism (perhaps there still is...)
- The best simulations still don't (*) reliably explode
- Extremely complex

We need a good diagnostic

CCSN Simulation status

(Adapted from A. Burrows)

- Rapidly advancing field
- Neutrino driven explosion 'unsatisfactory'
- Consensus that the 'true' mechanism should not be 'marginal'
- Prompt and 1D models always fizzle
- GR... makes no difference
- Improved neutrino physics... makes no difference
- EOS... probably makes no difference
- All groups get ~the same results for all progenitors

CCSN Simulation status

(Adapted from A. Burrows)

- 2D/3D model are showing more promise
- Asymmetry looks to be the key
 - Enhances convection
 - Induces 'fingers'
- The asymmetry probably comes from <u>rotation</u>
 - 'Naturally' produces bi-polar explosions
 - Collapse amplifies rotation
 - Increases gain region, reduces effective gravity
 - Likely explanation of pulsar kicks
 - Likely source of gravitational radiation
- Possible role of g-wave acoustics, excitation of scalar fields, etc.

The Neutrino Mechanism

- Massive star (>8–10 M_{\odot})
- Stellar evolution → onion-skin-like structure
- At maximum of BE/A, thermal support lost \rightarrow Collapse
 - Huge flux of neutrinos "re-energises" explosion
- Neutrino driven wind an excellent candidate site for the r-process

The Acoustic Mechanism

- 'New' mechanism: A. Burrows et al. (ApJ 640 (April 2006) 878-890)
- In-fall of matter on to the core induces strong gravity waves
- These set up acoustic oscillations a few hundred milliseconds after core collapse.
- Oscillations couple efficiently with the outer core/overlying material,
- Intense sound waves radiated.
- Appears to lead to robust explosion

Scalar Gravity

- Scalar fields do exist: Higgs mechanism
 - Also invoked in inflation & dark energy
- Theory here is that extreme nuclear density of a neutron star can excite scalar gravity field.
- Similar to Higgs mechanism, spontaneous symmetry breaking and energy release as 'matter rolls down a
 - 'Mexican-hat' potential'
 - Provides required additional energy release for robust SN explosions.
- Could possibly be tested suppose this mechanism leads to a different ⁴⁴Ti abundance?
- Need nuclear uncertainties removed to allow

"The Wang Particle..."

THE SUNDAY TIMES

Section: News Edition: 01 Date: 02 September 2012 Page: 11

Circulation: 919424 Source: ABC Jul 2012

Does it all begin with a big Wang?

Jonathan Leake Science Editor

FRESH from their triumph in tracking down the elusive Higgs boson, physicists at Cern are seeking another exotic subatomic particle — the Wang. They are designing an experiWang has some uncanny parallels with Higgs, partly because he, too, is based at a Scottish university but also because, if proven, the Wang (as it has not yet been formally named)would be a similar type of particle to the Higgs and

invisible subatomic particles streaming out from the star rather than a huge visible explosion. It is this explosion that converts the outer layers of the star into new elements and blasts them into space.

At Cern this November, how-

Oh dear...!

Could ⁴⁴Ti discriminate between these models?

"there should be some interesting differences on average between the predictions/expectations of the various mechanisms (neutrino, acoustic, magnetic, etc.), we have yet truly to determine these." Adam Burrows, Princeton, Jan 2012

"By accident we noticed e.g. in simple parametrized explosions with the same explosion energy, that pistons (like used by Woosley and Heger) produce less ⁴⁴Ti than thermal bombs (like used by Nomoto, myself, Umeda). The point is just that in the innermost ejecta the entropies are higher."

Friedel Thielemann, Basel, Jan 2012

The Importance of ⁴⁴Ti

- Amount ejected sensitively depends on location of the 'mass cut'
 - ⁴⁴Ti that is ejected will become a γ-ray emitter
- Material that 'falls back' is not available for detection
- ⁴⁴Ti yield is sensitive to the explosion mechanism
- Thus, very useful for models to make compare against

The Importance of ⁴⁴Ti

- ⁴⁴Ti that is ejected will become a γ-ray emitter
- Cassiopeia-A, Vela, SN1987A
- τ=60 yrs, E_γ=1.157 MeV
- 'Easily' observable
- INTEGRAL & other missions
- Also Meteoritic data
- Enrichment of ⁴⁴Ca in type X presolar grains

Key Reactions

Reaction rate sensitivity studies: *The et al*: ApJ 504 (1998) 500 *Magkotsios et al*: APJS 191 (2010) 66

- Papers agree, ⁴⁴Ti(α,p) most important reaction
- Importance stems from it being the bottle neck in reaction flow as material drops out of QSE

Order of Importance of Reactions Producing 44 Ti at $\eta = 0^{a}$

Reaction	Slope
$^{44}\text{Ti}(\alpha, p)^{47}\text{V}\dots$	-0.394
$\alpha(2\alpha, \gamma)^{12}$ C	+0.386
$^{45}V(p, \gamma)^{46}Cr$	-0.361
${}^{40}Ca(\alpha, \gamma){}^{44}Ti$	+0.137
57 Co(p, n) 57 Ni	+0.102
${}^{36}\text{Ar}(\alpha, p){}^{39}\text{K}$	+0.037
$^{44}\text{Ti}(\alpha, \gamma)^{48}\text{Cr}$	-0.024
${}^{12}C(\alpha, \gamma){}^{16}O$	-0.017
${}^{57}Ni(p, \gamma){}^{58}Cu$	+0.013
${}^{58}Cu(p, \gamma){}^{59}Zn$	+0.011
${}^{36}Ar(\alpha, \gamma){}^{40}Ca$	+0.008
$^{44}\text{Ti}(p, \gamma)^{45}\text{V}\dots$	-0.005
${}^{57}Co(p, \gamma){}^{58}Ni$	+0.002
57 Ni (n, γ) 58 Cu	+0.002
54 Fe(α , <i>n</i>) 57 Ni	+0.002
${}^{40}Ca(\alpha, p){}^{43}Sc$	-0.002

^a Order of importance of reactions producing ⁴⁴Ti at $\eta = 0$ according to the slope of $X(^{44}\text{Ti})$ near the standard reaction rates.

	International weekly journal of science		Search Advanced ser
Home News & Comment	Research Careers & Jobs Current Issue Arc	hive Audio & Video For Au	uthors
Archive Volume 490	Issue 7420 Letters Article		
	ARTICLE PREVIEW view full access options >>		Journal home Subscribe
ATURE LETTER		< 🛛 🔒	For authors 🔊 RSS feed
本語要約			·高 全(金
Hard-X-ray er n the remnan	nission lines from the de t of supernova 1987A	ecay of ⁴⁴ Ti	Monthly Statistics
. A. Grebenev, A. A. Luto	vinov, S. S. Tsygankov & C. Winkler		
ffiliations Contribution	s Corresponding author		Selected feature
ature 490 373-375 (18)	October 2012) doi:10.1038/nature11473 11 Accepted 13 August 2012 Published onlir	ne 17 October 2012	
eceived 23 November 20			

⁴⁴Ti(α ,p) Present data

- Astrophysical region is 3-6 MeV *Hoffman et al*. APJ 715 (2010) 1383
 - New evaluation of ⁴⁴Ti(α,p) reaction rate
 - Conclude that ⁴⁴Ti(α,p) uncertainty has been underestimated (x3)

Data achieved with $\sim 10^5$ pps on target

⁴⁴Ti Beam

- Part of the ERAWAST project
- Chemically separate ⁴⁴Ti from highly irradiated accelerator components of PSI
- SINQ neutron spallation facility:
 - >10 yrs of ~2 mA 590 MeV
 - >10 yrs of cooling

IOPSCIENCE Journals - Login -

Journal of Physics G: Nuclear and Particle Physics

Journal of Physics G: Nuclear and Particle Physics > Volume 39 > Number 10 R Dressler et al 2012 J. Phys. G: Nucl. Part. Phys. 39 105201 doi:10.1088/0954-3899/39/10/105201

⁴⁴Ti, ²⁶Al and ⁵³Mn samples for nuclear astrophysics: the needs, the possibilities and the sources

FREE ARTICLE

R Dressler¹, M Ayranov¹, D Bemmerer², M Bunka¹, Y Dai¹, C Lederer³, J Fallis⁴, A StJ Murphy⁵, M Pignatari⁶, D Schumann¹, T Stora⁷, T Stowasser¹, F-K Thielemann⁶ and P J Woods⁵ Show affiliations

ERAWAST

Exotic Radionuclides from Accelerator Waste for Science and Technology

⁴⁴Ti Sourcing

- ~100 MBq (~3x10¹⁷ atoms) has been allocated for this project
- Require 10⁷ pps for 28 shifts: ~10¹³ total
- Required 'Efficiency' is ~10⁻⁴

Sample preparation

- Around 50 MBq of ⁴⁴Ti dissolved in HNO₃.
- Poured and dried on a *molybdenum* foil
- Shipped from PSI to CERN
- Would a single source foil provide beam for 2 weeks?

⁴⁴Ti Delivery from PSI

- Foil inserted in a standard target container in the ISOLDE Class A target laboratory,
- Connected to VADIS FEBIAD ion source (VD5 config')
- A large CF_4 gas leak \rightarrow TiFx molecular ions.
- Installed on GPS Front End
 - TiF³⁺ molecular beam extracted.
- Dissociation during charge breeding in REX-ISOLDE
- Accelerated
- $\sim 5x10^5$ to $\sim 5x10^6$ pps for ~ 100 hours.
- No significant apparent isobaric contamination,
- Beams of 3.9 and 4.2 MeV (cm) were provided.

⁴⁴Ti Experiment configuration

Beware fusion-evaporation

December 2012

So, what have we seen?

Beam delivery

2.10 & 1.95 MeV/u ⁴⁴Ti 13⁺

Started at about 7epA Ends at about 0.5 epA

Use of photo diodes shows beam to be (almost) pure ⁴⁴Ti

- All numbers are consistent with each other
- σ(Ruth.) ~ 30mbarn
- "Reacting" beam on target: ~2*10^{11 44}Ti

Future plans

More data!
18 shifts still at ISOLDE
TRIUMF?
GANIL?
CRIB RIBF?

More reactions! ⁴⁴Ti(α, γ); ⁴⁴Ti(p,γ) @ TRIUMF ⁴⁵V(p, γ) @???

CCSN Simulations...?

The University of Edinburgh School of Physics & Astronomy

Overview

Astronomy

Condensed Matter at

Extreme

Conditions/Geophysics

High Performance

Computing/Biophysics

Particle Physics Experiment/Nuclear Physics

Particle Physics Experiment/Nuclear Physics

The Particle Physics Experiment (PPE) and Nuclear Physics (NP) groups wish to build on their recent successes, which include the observation of the Higgs boson at the LHC, and world leading results on dark matter.

http://www.ph.ed.ac.uk/chancellors-fellows

Applications by: 18 April 2013

<u>The team:</u> T. Davinson, J. Fallis, A. Kankainen, A. Laird, G. Lotay, D. Mountford, V. Margerin, ASM, C. Murphy, D. Schumann, T. Stora, C. Wang, P. Woods

Thank you!

