The Application of R-Matrix Analysis to Experimental Data

1 - Resonance Properties

Alex Murphy & David Mountford

Contents

- The R-Matrix Formalism
- Context: The ${}^{18}F(p,\alpha){}^{15}O$ Reaction
 - (Doing an...) R-Matrix analysis
 - Comparison of R-Matrix Codes
 - Conclusions

Some Theory...

- "Bible": Lane and Thomas, Rev. Mod. Phys. 30, 257 (1958)[1]
- Basics: split system into internal and external regions:

- R-Matrix radius ~ nuclear radius, slightly larger
- Various incoming "channels"

Internal Region:

- Wavefunction not well understood, cannot obtain cross section...
 - Radial and spherical contributions
 - Set of orthonormal basis functions

$$\Psi = \sum_{c} \psi_{c} \phi_{c} = \sum_{\lambda} C_{\lambda} \chi_{\lambda}$$

• Calculating coefficients and solving Schrodinger equation:

$$\phi_{c} \left(\frac{\hbar^{2}}{2\mu_{c}r_{c}}\right)^{\frac{1}{2}} = \sum_{\lambda} \left(E_{\lambda} - E\right)^{-1} \sum_{c'} \left(\frac{\hbar^{2}}{2\mu_{c'}r_{c'}}\right)^{\frac{1}{2}} \gamma_{\lambda c} \gamma_{\lambda c'} \left[\rho_{c'}\phi'_{c'} - \phi_{c'}b_{c'}\right]$$

- Purely radial
- All spherical dependence absorbed by γ
- Extract "R-matrix":

$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E}$$

- External Region:
 - Purely Coulomb potential

Radial wavefunction is well understood combination of well known
 Coulomb functions:

$$\phi_{c} = \frac{1}{\sqrt{v_{c}}} \left(A_{c}I_{c} - \sum_{c'} U_{cc'}A_{c'}O_{c} \right)$$
$$I_{c} = \left(G_{c} - iF_{c} \right) e^{i\omega_{c}}$$
$$O_{c} = \left(G_{c} + iF_{c} \right) e^{-i\omega_{c}}$$

- $U_{cc'}$ = scattering matrix
- Substitution into internal wavefunction gives scattering matrix in terms of R-matrix:

$$U = \rho^{\frac{1}{2}}O^{-1}(1-RL)^{-1}(1-RL^*)I\rho^{-\frac{1}{2}}$$

To cross section:

– One U for every J^{π} group

$$\frac{d\sigma}{d\Omega} \propto \left| U_J U_{J'}^* \right|$$

- $U \sim e^{2i\delta}$, $\delta = \text{total phase shift:}$ $\frac{d\sigma}{d\Omega} \propto \cos(2(\delta_J - \delta_{J'}))$
- $\delta = \text{phase of U}$
- Cross section calculated either directly from U or from phase shifts

R-Matrix Implementation Simplified multi channel code (P. Descouver, pt): $\frac{d\sigma}{d\Omega} \propto \cos(2(\delta_J - \delta_{J'}))$

							Cr									\land	
	Α	В	С	D	E	F	G	H		J	K	L	M	N	0 1/2		Q
1 /	A1= `	18	A2=	1	Z1=	9	Z2=	1	a1= 🏾 🎽	15 :	a2=	4 z	1=	8 z2:	-		6
2	1=	1	12=	1					i1=	1	12=	0					
3	max=	5	Imax=	4					Q=	-2.8818							9
4	nbar^2/2m=	= 20.736				— h	nclude inelas	stic (or								~/	_
5							ransfer) char	nels									
6]=	[ansiery ena	11010									
76	ell=	these da	ta are now in a	sheet "input"						Coo obi	2	Co	variance matrix	c			
8	=						Go			See ch	2						
9 r	nres=																
10	r=																
11 1	` or γ2=																
12 9	sign=																
13		-0.187271	0.7542637	1.1547151	1.245944	1.188422	0.967209	-0.652918	1.534383								
14		0.8824691	0.0234101	0.0708146	0.242541	0.319927	0.42501	0.71013	0.051694								
15		0.1455901	0.0114092	0.0067981	-0.140538	0.415444	0.009837	0.461131	0.039068								
16 4	partial wa	ave(s)															
17 8	3 resonanc	e(s)															
18																	
19 1	JataSheet	elastic	inelastic														
20 /	Angle	175.63365	175.63365								O Minimiza	ation on a grid					
21	lype	0	1													_	
22 1	ibre points	54	41								 Automati 	c minimization	(based on rov	ws 10,11)		-	
23 0	ielta_E	0.003/0.005	0.007/0.013								_			0.5		-	
24 5	selection		1								- Energies	from/to/step:		0.5			
23 1	amui ahi2 nort	1 0070400	1 0070069								N24/N25/	/N26		1.0			
20 0	mz part.	1.9672439	1.22/0200									1.10		0.05			
28 (Colle										Print phas	e shifts					
20	vol										Compute d	errors					
30	nitial										compare						
30	inal																
32	inai																
32		1 6334795		0.665	0.015	0.024	0 759	0.0016	0.0024	1 16	0.0023	0.0019	1 335	0.065	0.026	1 455	
34	terations	1.000-130	errors	0.000	0.010	0.024	0.105	0.0010	0.0024	1.10	0.0020	0.0013	1.000	0.000	0.020	1.400	1
35	Angle	Angle cm	Ecm (MeV)	Nucl (mb)	Coul (mb)	Nucl/Coul	Inelastic										
36	175 6337	175 63365	0.585	287 65044	307 6378	0.93503	287 6504										
37	175 6337	175 63365	0.000	250 56181	282 9383	0.88557	250 5618										
38	175 6337	175 63365	0.635	210 04863	261 0983	0.804481	210 0486										
39	175 6337	175 63365	0.000	236 56629	241 6927	0.97879	236 5663										
40	175 6337	175 63365	0.685	316 90475	224 3728	1 /12/02	316 9047										Y
		->->IH	IELP input	elastic	inelastic	Main 🖌 Shee	t1 +					(
	Norm	al View	Ready							Sum	=0	•					

Experimental Work

$^{18}F(p,\alpha)^{15}O$

Motivation

- ¹⁸F is the dominant gamma-ray emitter in novae
- Abundance strongly dependent on rate of this reaction
- Reaction proceeds through poorly known resonances in ¹⁹Ne
 - Theoretical expectation of additional states

Need to find and characterise states in ¹⁹Ne

- Pure, intense ¹⁸F beam
- 'Thick' CH₂ target
- ¹⁸F stopped in target
- Adjust beam energy & target thickness for desired *Ecm* coverage
- Protons and alpha particles detected downstream in DSSDs

Simultaneous excitations functions of ¹⁸F(p,p)¹⁸F & ¹⁸F(p,α)¹⁵O

¹⁹Ne

Thick Target Technique

Thick Target Technique

T

Experimental Data

Results

		Ecm (MeV)	J™	Гр(keV)	Γα(keV)	Int
	4	0.665	3/2+	15	24	+
E	в	0.759(20)	3/2+	1.6(5)	2.4(6)	
-	C	1.096(11)	5/2+	3(1)	54(12)	
1	D	1.160(34)	3/2+	2.3(6)	1.9(6)	
	E	1.219(22)	3/2-	21(3)	0.1(1)	
	F	1.335(6)	3/2+	65(8)	26(4)	-
0	3	1.455(38)	1/2+	55(12)	347(92)	
ŀ	4	1.571(13)	5/2+	1.7(4)	12(3)	

- Results of R Matrix analysis carried out using DREAM code from P. Descouvemont
- Mountford *et al.*, Phys. Rev. C **85**, 022801(R) (2012)

Preliminary Results (A)

Preliminary Results (B)

					4		
		Ecm (MeV)	Jπ	Гр(keV)	Γα(keV)	Int	
	A	0.665	3/2+	15	24	+	
\langle	В	0.759(20)	3/2+	1.6(5)	2.4(6)		\Rightarrow
	С	1.096(11)	5/2+	3(1)	54(12)		
	D	1.160(34)	3/2+	2.3(6)	1.9(6)		-
E	E	1.219(22)	3/2-	21(3)	0.1(1)		ls/o
	F	1.335(6)	3/2+	65(8)	26(4)	-	[m]
	G	1.455(38)	1/2+	55(12)	347(92)		ion
	Н	1.571(13)	5/2+	1.7(4)	12(3)		ect

- Reported by Nesaraja/ Dalouzy
- Significantly weaker than Dalouzy
- Consistent in strength with Nesaraja

Preliminary Results (C & D)

Differential Cross Section (mb/sr)

		Ecm (MeV)	Jπ	Гр(keV)	Γα(keV)	Int
	A	0.665	3/2+	15	24	+
	В	0.759(20)	3/2+	1.6(5)	2.4(6)	
_	С	1.096(11)	5/2+	3(1)	54(12)	
-	D	1.160(34)	3/2+	2.3(6)	1.9(6)	
1	E	1.219(22)	3/2-	21(3)	0.1(1)	
	F	1.335(6)	3/2+	65(8)	26(4)	-
	G	1.455(38)	1/2+	55(12)	347(92)	
	Н	1.571(13)	5/2+	1.7(4)	12(3)	

- C reported by Murphy narrower but current result relatively consistent
- C and D reported by Dalouzy/Nesaraja at different strengths
- C in good agreement in energy

Preliminary Results (E)

sr)

Differential Cross Section (mb/

		Ecm (MeV)	J¤	Гр(keV)	Γα(keV)	Int
	Α	0.665	3/2+	15	24	+
	В	0.759(20)	3/2+	1.6(5)	2.4(6)	
	С	1.096(11)	5/2+	3(1)	54(12)	
	D	1.160(34)	3/2+	2.3(6)	1.9(6)	
Z	Ε	1.219(22)	3/2-	21(3)	0.1(1)	
	F	1.335(6)	3/2+	65(8)	26(4)	-
	G	1.455(38)	1/2+	55(12)	347(92)	
	Н	1.571(13)	5/2+	1.7(4)	12(3)	

- Previously reported by Nesaraja and Murphy
- Agreement in spin with Murphy
- No agreement in strength
- Required to fit bottom of state F

Preliminary Results (F)

		Ecm (MeV)	J™	Гр(keV)	Γα(keV)	In
	Α	0.665	3/2+	15	24	+
	В	0.759(20)	3/2+	1.6(5)	2.4(6)	
	С	1.096(11)	5/2+	3(1)	54(12)	
	D	1.160(34)	3/2+	2.3(6)	1.9(6)	
E	E	1.219(22)	3/2-	21(3)	0.1(1)	
<	F	1.335(6)	3/2+	65(8)	26(4)	-
	G	1.455(38)	1/2+	55(12)	347(92)	
	Н	1.571(13)	5/2+	1.7(4)	12(3)	

- Observed by Murphy with less strength
- New strength due to strong correlation with state G

Preliminary Results (G)

Center of Mass Energy (MeV)

Preliminary Results (H)

		Ecm (MeV)	Jπ	Гр(keV)	Γα(keV)	Int
	Α	0.665	3/2+	15	24	+
	в	0.759(20)	3/2+	1.6(5)	2.4(6)	
	С	1.096(11)	5/2+	3(1)	54(12)	
	D	1.160(34)	3/2+	2.3(6)	1.9(6)	
E	Ε	1.219(22)	3/2-	21(3)	0.1(1)	
	F	1.335(6)	3/2+	65(8)	26(4)	-
	G	1.455(38)	1/2+	55(12)	347(92)	
<	Η	1.571(13)	5/2+	1.7(4)	12(3)	

- Observed by Dalouzy (alternative π) and Murphy (alternative J)
- Dalouzy J unambiguous but π inferred
- Current data strongly favours J^π=5/2⁺ at consistent strengths

Dufour/Descouvemont State??

- Candidate state observed at $E_{CM} = 1.455 MeV (G)$
- More than a factor of 2
- *narrower* than predicted in proton channel
- More than a factor of 2 *broader* than predicted in alpha channel
- But consistent in total width (402(93)keV) with Dalouzy (292(107)keV
- Broad state <u>is required</u> to fit to data

Impact: Enhanced S-Factor

- Low energy and sub-threshold parameters as in [3]
- Enhanced by prediction of [2]

A bit more about the fitting...

Problems

- E Many parameter fit
 - 10 x statistics in (p,p) channel compared to (p,α)
 - Changing energy resolution

Energy Resolution

Solutions...

- Monte Carlo to estimate energy resolution
- dE(E) in (some) R-Matrix code
- **Complexity** •

Statistics

Iterative analysis

- Literature values
- Trial and error (by eye adjustments)
- Fitting single resonances
- Fitting multiple resonances
- Fitting multiple channels
- Fitting entire data set
- Play God
 - Initially adjust error bars to change weightings
 - Make active use of error matrix (covariance)

Include additional contributions to final error bars!

• Co-variance

	in the first of the finance many for an parameters and we do they in the mang process.																					
	В			С			D			E			F			G			Н		Par.	
E _{c.m.}	Гр	Γα	$E_{c.m.}$	Γ_p	Γα	E _{c.m.}	Γ_p	Γ_{α}	$E_{c.m.}$	Γ_p	Γ_{α}	$E_{\rm c.m.}$	Γ_p	Γ_{α}	$E_{c.m.}$	Γ_p	Γ_{α}	$E_{\rm c.m.}$	Γ_p	Γ_{α}		
1 .	-0.51	0.99	0	0	0	0	0	0	0	0	0	0	0.02	0.02	-0.01	0.01	0	0	0	0	$E_{c.m.}$	В
	L	-0.51	0.01	0.03	0	0	0	0	-0.01	0.07	-0.02	0	-0.08	0.01	0	-0.03	0.04	0	0	0	Γ_p	
		1	0	0.01	0.01	0	0	0.01	0	0.01	0.01	-0.02	0.03	0.03	-0.02	0.01	0.02	0	0	0	Γ_{α}	
			1	0.14	0.03	0.05	0.02	0.05	-0.02	0.01	0.50	-0.01	0.01	0.04	0.12	-0.14	0.02	-0.01	-0.02	-0.01	$E_{c.m.}$	С
				1	-0.27	0.08	-0.02	0.07	-0.09	-0.05	-0.11	0.02	0.01	0.07	-0.27	0.21	0.25	0.09	0.05	0.11	Γ_p	
					1	0.02	0.13	0.07	-0.01	-0.02	-0.05	-0.02	0.06	0.07	0.10	0.21	-0.25	0.12	0.11	0.22	Γ_{α}	
						1	-0.78	0.99	-0.02	0.02	0.10	-0.03	0.08	0.08	-0.07	0.05	0.01	0	0	0	$E_{c.m.}$	D
							1	-0.71	-0.04	0.15	0.07	-0.01	-0.04	0.02	0.02	-0.05	0.05	0	0	-0.01	Γ_p	
								1	-0.01	0.02	0.17	-0.08	0.13	0.12	-0.07	0.03	0.03	0	-0.01	-0.01	Γ_{α}	
									1	-0.11	0.11	-0.02	0.04	0.04	-0.13	0.03	0.10	0	0.01	0	$E_{c.m.}$	E
										1	-0.29	0.01	-0.42	0.07	-0.13	0.03	0.06	0	0	-0.01	Γ_p	
											1	-0.08	0.24	0.18	0.02	-0.46	0.27	-0.13	-0.20	-0.34	Γ_{α}	
												1	-0.50	0.17	0.04	0.08	-0.22	0	0	0	$E_{c.m.}$	F
													1	-0.02	-0.23	0.18	-0.08	-0.01	0.02	0.02	Γ_p	
														1	-0.56	0.33	-0.08	-0.01	0.03	0.01	Γ_{α}	
															1	-0.33	0	-0.33	0.22	0.19	$E_{c.m.}$	G
																1	-0.69	-0.19	0.53	0.60	Γ_p	
																	1	0.03	-0.41	-0.51	Γ_{α}	
																	\smile	1	-0.63	-0.39	$E_{c.m.}$	Н
																			1	0.93	Γ_p	
																				1	Γ _α	

TABLE II. Covariance matrix for all parameters allowed to vary in the fitting process.

Alternative R-Matrix Implementation: AZURE

Generally available code from JINA
No limit to number of channels

PHYSICAL REVIEW C 81, 045805 (2010)

AZURE: An *R*-matrix code for nuclear astrophysics

 R. E. Azuma,^{1,2} E. Uberseder,^{2,*} E. C. Simpson,^{2,3} C. R. Brune,⁴ H. Costantini,^{2,5} R. J. de Boer,² J. Görres,² M. Heil,⁶ P. J. LeBlanc,² C. Ugalde,^{2,†} and M. Wiescher²
 ¹Department of Physics, University of Toronto, Toronto, Ontario M5S IA7, Canada
 ²University of Notre Dame, Department of Physics, Notre Dame, Indiana 46556, USA
 ³Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
 ⁴Department of Physics and Astronomy, Ohio University, Ohio 45701, USA
 ⁵Istituto Nazionale Fisica Nucleare (INFN), Genova, Italy
 ⁶GSI Darmstadt, Planckstr. 1, 64291 Darmstadt, Germany (Received 11 January 2010; published 26 April 2010)

The paper describes a multilevel, multichannel R-matrix code, AZURE, for applications in nuclear astrophysics. The code allows simultaneous analysis and extrapolation of low-energy particle scattering, capture, and reaction cross sections of relevance to stellar hydrogen, helium, and carbon burning. The paper presents a summary of R-matrix theory, code description, and a number of applications to demonstrate the applicability and versatility of AZURE.

DOI: 10.1103/PhysRevC.81.045805

PACS number(s): 26.20.Cd, 25.40.Lw, 24.10.-i

• Same parameters in each code:

• Same parameters in each code:

• Individual J^{π} groups:

T

• Combining 1/2⁺ and 5/2⁺:

- Opposite interference between groups
- Discrepancy is not in angular coupling coefficients

• Discrepancy arises in use of arctan to calculate δ 's, alternative interference:

Mountford	et al [6]		AZURE Res	ults		
E_{CM}	J^{π}	Γ_p	Γ_{α}	E_{CM}	Γ_p	Γ_{α}
(MeV)		(keV)	(keV)	(MeV)	(keV)	(keV)
0.665	$\frac{3}{2}^{+}$	15.2	23.8	0.665	15.2	23.8
0.759(20)	$\frac{3}{2}^{+}$	1.6(5)	2.4(6)	0.755(77)	1.7(17)	3.3(33)
1.096(11)	$\frac{5}{2}$ +	3(1)	54(12)	1.097(29)	3.3(20)	71(45)
1.160(34)	$\frac{3}{2}$ +	2.3(6)	1.9(6)	1.149(14)	2.5(25)	2.1(21)
1.219(22)	$\frac{3}{2}$ -	21(3)	0.1(1)	1.211(17)	27(17)	0.2(2)
1.335(6)	$\frac{3}{2}^{+}$	65(8)	26(4)	1.339(23)	65(13)	31(27)
1.455(38)	$\frac{1}{2}^{+}$	55(12)	347(92)	1.498(176)	44(23)	313(147)
1.571(13)	$\frac{5}{2}^{+}$	1.7(4)	12(3)	1.569(30)	1.7(12)	8(6)

Conclusions

- R-matrix formalism extremely useful for extracting resonance parameters for astrophysical reactions
- New data obtained in study of astrophysically important ${}^{18}F(p,\alpha){}^{15}O$ reaction
- Analysis, aided by R-Matrix calculations, finds candidate for newly proposed s-wave state

Enhanced rate of ¹⁸F destruction → less ¹⁸F → detectability distance reduced

Collaborators

D. J. Mountford, T. Davinson, P. J. Woods (University of Edinburgh),
A. Laird, J. R. Brown (University of York), N. de Sereville (Orsay),
C. Angulo (Tractebel Engineering), N. L. Achouri (LPC Caen),
F. de Oliveira, P. Ujic, O. Kamalou (GANIL), S. T. Pittman (ORNL),
P.Descouvemont (Universite Libre de Bruxelles),
M. Wiescher, E. Uberseder and R. J. deBoer (University of Notre Dame)

Thank You