Radioactive beam experiments relevant to gamma-ray emitters in novae and supernovae

Alex Murphy School of Physics & Astronomy

Astronomy & Astrophysics manuscript no. arxiv January 10, 2010

© ESO 2010

New estimates of the gamma-ray line emission of the Cygnus region from INTEGRAL/SPI observations

Pierrick Martin^{1,2}, Jürgen Knödlseder^{1,2}, Roland Diehl³, and Georges Meynet⁴

Fig. 1. Spectrum of the 1809 keV emission from the Cygnus region, from about 4 years of INTEGRAL/SPI observations. The red line represents the best Gaussian fit to the data points.

	Gamma Ray Emitters				
	Nucleus	lifetime	Emission	Source	
EDI	¹³ B	862 s	511 keV	CO Novae	
4				ONe Novae	
	¹⁸ F	158 m	511 keV	CO Novae	
				ONe Novae	
	⁷ Be	77 d	478 keV	CO Novae	
	²² Na	3.75 yr	1275 keV	ONe Novae	
	²⁶ AI	1.0 Myr	1809 keV	WR, CC SNe?	
_	⁴⁴ Ti	87 yr	1157 keV	CC SNe	
	⁶⁰ Fe	2.2 Myr	1173,1333 keV	CC SNe	

¹⁸ $F(p,\alpha)^{15}O$ in novae

- ¹⁸F is the leading candidate for satellite gamma-ray observation from Novae
- ¹⁸F(p,α)¹⁵O is the main nuclear physics uncertainty in ¹⁸F production
- Issues concerning *l*=0 resonances, missing, broad and sub-threshold resonances
- Recent data from TRIUMF and GANIL

Nuclear Physics: Options

Direct

- Explicitly perform the reaction,
- D 1 event at a time
 - Event rate <u>very</u> low at relevant temperatures

Indirect

- 'Use' nuclear physics to access experimentally challenging region
- But... issues: extrapolation, interference, structure differences...

Indirect: TRIUMF

(Typical) TRIUMF set-up

Data

- R-matrix analysis
- Analysis based on (p,p) only would have been VERY different to that based on simultaneous (p,p) and (p,α)
- Deduce $E, \Gamma_p, \Gamma_\alpha, \ell$, interference

Broad $\ell = 0$ state at ~1.5 MeV?

50 -40 18F(p,α)15O E_x=1573+6411=7984 keV 30 $\Gamma_{\rm p} = 8^{+8} - 4 \, {\rm keV}$ 20 Γ_{α} = 34± 13 keV 10 0.75 1.25 1.50 1.00 1.75 0.50 Center of Mass Energy (MeV) E_{lab} (MeV) 17 16 15 14 13 12 11 10 50 Dalouzy et al. PRL 102 (2009) 162503 40 do do (µbam.sr⁻¹) 30 Use inelastic scattering 25 ¹H(¹⁹Ne,p)¹⁹Ne*(p)¹⁸F 20 15 E_x=7863±39 keV 10 $\Gamma_{tot} = 292 \pm 107 \text{ keV}$ 7.8 6.8 7 7.2 7.4 7.6 8 8.2 8.4 Excitation Energy (MeV)

Indirect: GANIL

GANIL: Preliminary results

¹⁸F(p,p)

- More work needed
- Broadly consistent with TRIUMF data
- Confirms 1009 keV resonance result
- Unclear regards 1.49 MeV state

GANIL: Preliminary results

18F(p,α) Sum Known 3/2+ states Known 5/2+ states Proposed 1/2+ state

35

30

25

20

15

10

5

0

Π

---•-- Data

- More work needed!
- Backgrounds clearly need to be better understood
- However... one might argue that there is 'no room' for the 1.49 MeV state...

Thesis work of David Mountford (Edinburgh)

The IoP one day meeting on Radioactivity in Astrophysics: 10 December 2010

1.5

2

Direct: TRIUMF

Thesis work of Clare Beer (York)

¹⁸F(p,α) in the Gamow Window

Key issue to be resolved:

PHYSICAL REVIEW C 79, 015801 (2009)

Low-energy ¹⁸F(p, α)¹⁵O cross section measurements relevant to nova γ -ray emission

N. de Séréville,^{1,2,*} C. Angulo,^{1,†} A. Coc,³ N. L. Achouri,⁴ E. Casarejos,⁵ T. Davinson,⁶ P. Descouvemont,⁷ P. Figuera,⁸ S. Fox,⁹ F. Hammache,² J. Kiener,³ A. Laird,⁹ A. Lefebvre-Schuhl,³ P. Leleux,¹ P. Mumby-Croft,⁹ N. A. Orr,⁴ I. Stefan,^{2,10} K. Vaughan,⁹ and V. Tatischeff³

What is the cross section in the Gamow window?

Solution: Make a measurement at low energy 250 keV

Thesis work of Clare Beer (York)

The IoP one day meeting on Radioactivity in Astrophysics: 10 December 2010

It could be we are seeing the contribution from a sub-threshold state...

⁴⁴Ti and Core Collapse Supernovae

arXiv:1011.5494v1 [astro-ph.SR] 24 Nov 2010

The Disappearance of the Red Supergiant Progenitor of Supernova 2008bk

Seppo Mattila,^{1,2*} Stephen Smartt,³ Justyn Maund,^{4,5} Stefano Benetti,⁶ Mattias Ergon¹

The Neutrino Mechanism

GANIL EEC March 11th 2010

⁴⁴Ti production as a diagnosti

- Amount ejected sensitively depends on location of the 'mass cut'
 - Material that 'falls back' is not available for detection
- ⁴⁴Ti yield a sensitive diagnostic of the explosion mechanism
- Thus, very useful for models to make comparisons against

Timmes *et al.* (1996)

Key Reactions

L.S. The et al. ApJ 504 (1998) 500

- ${}^{40}Ca(\alpha,\gamma)$
 - Recent from Nassar *et al. (PRL 6 (2006) 041102)*
 - Results from Vockenhuber *and*. (*PRC* 76 (2007) 035801)
- Triple– α
 - Ubiquitous; not the focus here
- $^{44}\text{Ti}(\alpha,p)$
 - Sonzogni *et al.* PRL 84 (2000) 1651: Measured above Gamow window
- $^{44}\text{Ti}(\alpha,\gamma)$
 - No relevant data
- ${}^{45}V(p,\gamma){}^{46}Cr$
 - Interesting, no relevant data, hard...

⁴⁴Ti(α,p): Sonzogni data

Note: Astrophysical region is ~1-4 MeV Need to be able to access cross sections to <1 mb Accuracy of HFSM reduces at lower energies

GANIL EEC March 11th 2010

The ERAWAST Project

- "Exotic Radionuclei from Accelerator Waste"
- Nuclear Astrophysics, geophysics, medicine, industry, etc etc...
- 3.5 MBq presently available ($\sim 2x10^{17}$ ions); 20 ml 1M HNO₃
- Hot Ti within SUPERNANOGAN?
- Impinge accelerated beam on to ⁴He gas cell / windowless gas target
- Could consider making ⁴⁴Ti target

GANIL EEC March 11th 2010

Proposals

S1289 the reac Spokes

TRIUMF

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

August 6, 2010

Dr. A.J. Murphy University of Edinburgh amurphy@ph.ed.ac.uk

Dear Dr. Murphy:

I am pleased to inform you that, at its meeting held July 29 & 30, 2010, the Subatomic Physics Experiments Evaluation Committee recommended that your experiment S1289 be given stage 1 approval at medium-high priority. Please see the committee recommendation on the next page.

As you are aware, your experiment will have to undergo a formal safety review by the TRIUMF Science Division Safety Committee before being allocated beam time. In addition, a Technical Review will be required outlining technical demands the experiment will place on TRIUMF (space, cryogenics and electrical support, machine shop, electronics shop, drawing office, detector facility, electronics pool, and wire chamber support). According to our policy, no experiments will be scheduled for beam without the relevant safety approvals and technical reviews.

At year-end, the TRIUMF Publications Office may request a report on your experiment for the TRIUMF Annual Report. We would also like to request that you give appropriate acknowledgement to TRIUMF in any of your talks or publications.

Let me congratulate you and your colleagues, and wish you every success with your experiment. Please do not hesitate to contact me if I can be of help in any way.

Yours sincerely,

Richard Gen

Richard Woloshyn for Gordon C. Ball Science Division Head

ent of ,γ) to

urphy

The IoP one day meeting on Radioactivity in AsGANIVs CEC10 are the 2010

ERAWAST workshop

29 Aug - 2 Sept 2011

PSI

29.8.-2.9.2011 at Paul Scherrer Institute Villigen, Switzerland

Application fields: Nuclear Astrophysics **Basic Nuclear Physics** Accelerator Mass Spectrometry Geophysics and Geochemistry Nanotechnology

Dorothea Schumann (chair) PSI Villigen Ines Günther-Leopold PSI Villigen Franz Käppeler KIT Karlsruhe John DAuria Anton Wallner Walter Kutschera Rene Reifarth Gunther Korschinek Thierry Stora Daniel Bemmere Michael Paul Michael Hass Alexander Murphy

International Advisory Board TRIUMF Vancouver Uni Wien Uni Wien GSI Darmstadt Uni München CERN Genf FZD Dresden Uni Jerusalem Weizmann Institute Rehovot Uni Edinburgh

Rugard Dressler

Maruta Bunka

Rocket Science!

30x better narrow line sensitivity

JP. Prost (TAS)

