

⁴⁴Ti and Core Collapse Supernovae

Core Collapse Supernovae are...

- Some of the most powerful explosions in the Cosmos Some of the most scrutinised objects in the Universe
- Responsible for production of many heavy elements
- Responsible for shaping our local distribution of stars
- Until recently there was consensus on the basic mechanism (perhaps there still is...)
- The best simulations still don't reliably explode
- Neutrino driven or acoustic mode mechanism?
- Extremely complex

We Need a good diagnostic

The Neutrino Mechanism

- Massive star (>8–10 M_{\odot})
- Stellar evolution \rightarrow onion-skin-like structure
- At maximum of BE/A, thermal support lost → Collapse
- Huge flux of neutrinos "re-energises" explosion
- Neutrino driven wind an excellent candidate site for the r-process

The Acoustic Mechanism

- Self-consistent simulations of neutrino driven mechanism do not produces a robust explosion
- New mechanism: Burrows et al. (ApJ 640 (April 2006) 878-890)
 - In-fall of matter on to the core induces strong gravity waves
 - These set up acoustic oscillations a few hundred milliseconds after core collapse.
 - Oscillations couple efficiently with the outer core/overlying material,
 - Intense sound waves radiated.
 - Appears to lead to robust explosion

The Importance of ⁴⁴Ti

- ⁴⁴Ti that is ejected will become a γ-ray emitter
- Cassiopeia-A, Vela, not SN1987A
- τ =60 yrs, E_γ=1.157 MeV
- 'Easily' observable
- INTEGRAL & other missions
- Also Meteoritic data
 - Enrichment of ⁴⁴Ca in type X presolar grains

The Importance of ⁴⁴Ti

- Amount ejected sensitively depends on location of the 'mass cut'
 Material that 'falls back' is not available for detection
 - ⁴⁴Ti yield a sensitive diagnostic of the explosion mechanism
- Thus, very useful for models to make comparisons against

Key Reactions

Reaction rate sensitivity studies: *The et al*: ApJ 504 (1998) 500 *Magkotsios et al*: APJS 191 (2010) 66

- Papers agree, ⁴⁴Ti(α,p) most important reaction
- Importance stems from it being the bottle neck in reaction flow as material drops out of QSE

Order of Importance of Reactions Producing 44 Ti at $\eta = 0^{a}$

Reaction	Slope
44 Ti(α , <i>p</i>) 47 V	-0.394
$\alpha(2\alpha, \gamma)^{12}$ C	+0.386
$^{45}V(p, \gamma)^{46}Cr$	-0.361
$^{40}Ca(\alpha, \gamma)^{44}Ti$	+0.137
57 Co(<i>p</i> , <i>n</i>) 57 Ni	+0.102
${}^{36}\text{Ar}(\alpha, p){}^{39}\text{K}$	+0.037
$^{44}\text{Ti}(\alpha, \gamma)^{48}\text{Cr}$	-0.024
${}^{12}C(\alpha, \gamma){}^{16}O$	-0.017
${}^{57}Ni(p, \gamma){}^{58}Cu$	+0.013
${}^{58}Cu(p, \gamma){}^{59}Zn$	+0.011
${}^{36}Ar(\alpha, \gamma){}^{40}Ca$	+0.008
$^{44}\text{Ti}(p, \gamma)^{45}\text{V}\dots$	-0.005
${}^{57}\mathrm{Co}(p, \gamma){}^{58}\mathrm{Ni}\ldots$	+0.002
57 Ni (n, γ) 58 Cu	+0.002
54 Fe(α , <i>n</i>) 57 Ni	+0.002
${}^{40}Ca(\alpha, p){}^{43}Sc$	-0.002

^a Order of importance of reactions producing ⁴⁴Ti at $\eta = 0$ according to the slope of $X(^{44}\text{Ti})$ near the standard reaction rates.

⁴⁴Ti(α ,p) Present status

- Astrophysical region is 1-4 MeV
- *Hoffman et al*. APJ 715 (2010) 1383
 - New evaluation on ⁴⁴Ti(α,p) reaction rate
 - Conclude that ⁴⁴Ti(α,p) uncertainty has been underestimated (x3)
- Sonzogni compared to SMOKER
- NON-SMOKER provides significant update

Data achieved with $\sim 10^5$ pps on target

⁴⁴Ti(α ,p) Reaction Rates

SMOKER \rightarrow NONSMOKER: ⁴⁴Ti(α ,p) little effect ⁴⁴Ti(p, γ) major effect

⁴⁴Ti(α ,p) Reaction Rates NON-SMOKER includes better treatment of isospin suppression for alpha-capture reactions on N = Z nuclei Vockenhuber *et al.* states that ${}^{44}\text{Ti}(\alpha,p)$ NON-SMOKER rate is 100x smaller than SMOKER rate [J. Phys G: Nucl. Part. Phys. 35(2008)] Rauscher [priv. comm.] says this is in error. Only a factor of 20. Consequences if ⁴⁴Ti(α , γ) rate > ⁴⁴Ti(α ,p) rate

Direct measurement of ${}^{44}\text{Ti}(\alpha,p)$ at astrophysical energies

Sonzogni used a ⁴⁴Ti beam: ⁴⁵Sc(p,2n)⁴⁴Ti produced 180 μCi of ⁴⁴Ti, ~ 1.8x10¹⁶ atoms. About 38μCi were used in a copper insert for a negative ion Cs sputter source.

Priv. Comm.: Sonzogni approach has limited further capability

- Production of a ⁴⁴Ti target is viable: Daniel Bremmerer leads; Timescale 'few years'.
- Production of a ⁴⁴Ti ISOL beam is viable: beam development at GANIL, TRIUMF. Timescale is 'few years'
- Production of offline ⁴⁴Ti beam... this proposal

ERAWAST

Exotic Radionuclides from Accelerator Waste for Science and Technology

- A project to utilise long lived activity generated in PSI beam dumps
- Copper beam bumps, exposed to 1.5mA protons for ~12 years, dismantled ~15 years ago.
- ²⁶Al, ⁵⁹Ni, ⁵³Mn, ⁶⁰Fe or ⁴⁴Ti have been separated.
- SINQ facility material also available: other isotopes, e.g. ¹⁸²Hf

S.Steel - no ⁶⁰Co contamination

Applications: Nuclear physics, nuclear astrophysics, Geophysics, Radiopharmacy, AMS, RIMS,...

ERAWAST Second Workshop

Four talks 'dedicated' to ⁴⁴Ti

- Separation of ⁴⁴Ti from stainless steel by Maruta Bunka of the ERAWAST group,
- ⁴⁴Ti beams at CERN by Thierry Stora,
- Measurement of ⁴⁴Ti(α,p) with a radioactive ⁴⁴Ti target by Tariq Al-Abdullah (Daniel Bemmerer's group). Issues over safety: Au containment layers etc.
 - Uses of at reclaimed beams of ⁴⁴Ti at TRIUMF, Jennifer Fallis

Plus

Iris Dillmann in the "Dreams and Illusions" section
Measurement of stellar half-life of ⁴⁴Ti in a storage ring.
Efficiency at GSI to get the ions from the source to the storage ring is too low, but maybe could be considered once the Heidelberg storage ring moves to ISOLDE...?

⁴⁴Ti availability

"The bottom line on the ⁴⁴Ti is that there is more of it than we are going to know what to do with. They have actually stopped processing the copper beam dump because they have been having a lot more luck with stainless steel test samples that were put in their SINQ facility (spallation neutron source). These samples have the added benefit that no ⁶⁰Co is produced, so they don't have to wait very long before they can handle the material.

"They have determined that they have <u>300MBq</u> of ⁴⁴Ti in the samples produced to-date, and there are more experiments yet to be run. There are also tests on V-metal and V+Ti-metal and each of these samples is expected to contain <u>500MBq</u> of ⁴⁴Ti. There is plenty to share with the ⁴⁴Ti target experiment, and the medical people have moved on and are now producing their own. <u>The only</u> <u>limits for how much ⁴⁴Ti we can use to produce a beam will be</u> <u>set by the safety people."</u>

Jennifer Fallis, 6/9/2011

⁴⁴Ti Beam Production

- Development ongoing at ISOLDE, TRIUMF and GANIL
- 1 week at 10⁵ pps is about 10¹² ions
- With 10¹⁶ ions, 0.01 total is efficiency required for a significantly improved measurement
- ⁴⁴Ti can be provided in several forms (e.g. TiF₄, sublimates at 284°C, melting point 115°C / boiling point 445°C
- TRIUMF didn't even have to turn on oven to get a good vapour pressure!
- There is a good chance of getting up to 1% efficiency out of source when using TiF₄.
- "Should contact Andreas Türler (GSI) who has been developing Ti beams from an ECR source for heavy element studies."

⁴⁴Ti Experiment configuration

- This will be a challenging measurement
- Keep things as simple as reasonably possible
- Singles' protons and alpha's measured
- Exit window removes heavier particles
- Energy-ToF and/or E-DE particle identification
- Well understood gas cell
- Well understood detectors
- Require good beam monitoring
 - Intensity, **Purity**, Alignment
- Analysis is then, hopefully, relatively straightforward

Expected issues

²² Ne	source	gas	?
------------------	--------	-----	---

Charge state	A/Q (44Ti)
1	44
2	22
3	14.67
4	11
5	8.8
6	7.33
7	6.29
8	5.5
9	4.89
10	4.4

Scheduling

44Ti ions are available 'now'

- Experimental apparatus (gas cell, silicon, DAQ) is available now
- Gas cell windows need a little work
- Monte Carlo optimisation is ongoing
- Experimental team is already sufficient (additional collaborators welcome)
- Safety situation?
- Assessment of measures required to prevent activation?
- Window of opportunity during CERN 'shutdown year'?

Remaining Questions

Management:

- What formal beam requests / proposals are still required by ISOLDE?
- What is the status of Safety requirements?
- Scheduling issues? Can we run during shutdown year?
- Beam Development
 - How much ⁴⁴Ti will be required?
 - What form would be required (liquid, solid, salt, oxide).
 - Containment vessel? (It is of course better not to transfer the material at CERN from one vessel to another).
 - Could the ⁴⁴Ti be recovered? (10⁸ pps 1 wk = 22k dps)

Facility:

Assessment of measures required to prevent activation of beamlines, magnets, slits, etc?

Costs:

Transport fees, development fees, running fees?

Thank you