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1 Review of Vectors

1.1 Physics Terminology

Scalar : quantity specified by a single number;

Vector : quantity specified by a number (magnitude) and a direction;

e.g. speed is a scalar, velocity is a vector

1.2 Geometrical Approach

A vector is represented by a ‘directed line segment’ with a length and direction proportional
to the magnitude and direction of the vector (in appropriate units). A vector can be con-
sidered as a class of equivalent directed line segments e.g.

Q

_ _

P R

S

a a

Both displacements from P to Q and from R to S are represented
by the same vector. Also, different quantities can be represented
by the same vector e.g. a displacement of a cm, or a velocity of a
ms−1 or . . . , where a is the magnitude or length of vector a

Notation: Textbooks often denote vectors by boldface: a but here we use underline: a

(or sometimes ~a ). (Alternatively we can write PQ ≡
−→
PQ ≡ RS ≡

−→
RS.) Denote a vector

by a and its magnitude by |a| or a. Always underline a vector to distinguish it from its
magnitude. A unit vector is often, but not always, denoted by a hat â = a / a and represents
a direction. n is usually taken to be a unit vector (without a hat).

Addition of vectors – parallelogram law

i.e.

_

_

_ _a a+b

b

a+ b = b+ a (commutative) ;

(a+ b) + c = a+ (b+ c) (associative) .

Multiplication by scalars

A vector a may be multiplied by a scalar α to give a new vector α a, e.g.

(for (forα < 0)α > 0)_ α _a a

Also, for scalars α, β and vectors a and b

|αa| = |α||a|
α(a+ b) = αa+ αb (distributive)

α(βa) = (αβ)a (associative)

(α + β)a = αa+ βa .

1



1.3 Scalar or dot product

The scalar product (also known as the dot product) between two vectors is defined to be

a · b ≡ ab cos θ, where θ is the angle between a and b

θ

.

_

_a

b

a · b is a scalar – i.e. a single number.

Notes on scalar product

(i) a · b = b · a (commutative) ; a · (b+ c) = a · b+ a · c (distributive)

(ii) n · a = a cos θ = the scalar projection of a onto n, where n is a unit vector

(iii) (n · a)n = a cos θ n = the vector projection of a onto n

(iv) A vector may be resolved with respect to some direction n into a parallel component
a‖ = (n · a)n and a perpendicular component a⊥ = a − a‖. You should check that
a⊥ · n = 0

(v) a · a ≡ |a|2 ≡ a2 which defines the magnitude |a| of a vector. For a unit vector â·â = 1

1.4 The vector or ‘cross’ product

a× b ≡ ab sin θ n , where n is in the ‘right-hand screw direction’

i.e. n is a unit vector normal to the plane of a and b, in the direction of a right-handed
screw for rotation of a to b (through < π radians).

X _

_

. _

_n

a

θ
b

a b_

a× b is a vector – i.e. it has a direction and a length.

[It is also called the wedge product – and in this case denoted by a ∧ b.]

Notes on vector product

(i) a× b = −b× a (not commutative)

(ii) a× b = 0 if a, b are parallel
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(iii) a× (b+ c) = a× b+ a× c

(iv) a× (αb) = αa× b

1.5 The Scalar Triple Product

The scalar triple product is defined as follows

(a, b, c) ≡ a · (b× c)

Notes

(i) If a, b and c are three concurrent edges of a parallelepiped, the volume is (a, b, c).

To see this, note that:

area of the base = area of parallelogram OBDC

= b c sin θ = |b× c|
height = a cosφ = n · a

volume = area of base × height

= b c sin θ n · a
= a · (b× c)

θ

φ

.

_

_O

n_

_

b

c
a

B

D
C

b c_ _X

A

(ii) If we choose c, a to define the base then a similar calculation gives volume = b · (c× a)

We deduce the following symmetry/antisymmetry properties:

(a, b, c) = (b, c, a) = (c, a, b) = −(a, c, b) = −(b, a, c) = −(c, b, a)

(iii)
If a, b and c are coplanar (i.e. all three vectors lie in the same plane) then
V = (a, b, c) = 0, and vice-versa.

1.6 The Vector Triple Product

There are several ways of combining 3 vectors to form a new vector.
e.g. a× (b× c); (a× b)× c, etc. Note carefully that brackets are important, since the cross
product is not associative

a× (b× c) 6= (a× b)× c .
Expressions involving two (or more) vector products can be simplified by using the identity

a× (b× c) = (a · c) b− (a · b) c .

This is a result you must know – memorise it! This is sometimes known as the ‘bac-cab
rule’, but you must write the vectors in front of the scalar products to see this: a× (b× c) =
b (a · c)− c (a · b)

3



To show this, first note that b×c is ⊥ to the (b, c) plane. Now a× (b×c)
is ⊥ to b× c, so it must lie in this plane. Hence we can write

a× (b× c) = β b+ γ c

with β, γ scalars which must be linear in a & c, a & b respectively. Taking
the scalar product with a gives a · (a× (b× c)) = 0 = β(a · b) + γ(a · c),
and from this we can write β = α(a · c), γ = −α(a · b) for some constant
α, to give

a× (b× c) = α
[
(a · c)b− (a · b)c

]
The constant may be determined by considering the particular case when
c ‖ a and b ⊥ c (e.g. b = be

x
, c = ce

y
, a = ae

y
), to give a × (b × c) =

acb = α(acb− 0) or α = 1. (Exercise: work through this.)

_

_

. _

b c

b

c

_ X

1.7 Some examples in Physics

(i) Torque

The torque or couple or moment of a force about the origin is defined as T = r×F where
r is the position vector of the point where the force is acting and F is the force vector at
that point. Thus torque about the origin is a vector quantity.

O

_r

_F

_n

The magnitude of the torque about an axis through the origin in
direction n is given by n ·(r×F ). Note that this is a scalar quantity
formed by a scalar triple product

(ii) Angular velocity

Consider a point in a rigid body rotating with angular velocity ω: |ω| is the angular speed
of rotation measured in radians per second and ω̂ lies along the axis of rotation. Let the
position vector of the point with respect to an origin O on the axis of rotation be r.

O

_

_r

_ω

θ

v

You should convince yourself that the point’s velocity is v = ω ×
r by checking that this gives the right direction for v; that it is
perpendicular to the plane of ω and r; that the magnitude |v| =
ωr sin θ = ωρ, where ρ is the radius of the circle in which the point
is travelling.

(iii) Angular momentum

Now consider the angular momentum of a particle, this is defined by L = r× (mv) where
m is the mass of the particle.

Using the above expression for v we obtain

L = mr × (ω × r) = m
[
r2 ω − (r · ω) r

]
where we have used the identity for the vector triple product. Note that only if r is perpen-
dicular to ω do we obtain L = mr2ω, which means that only then are L and ω in the same
direction. Also note that L = 0 if ω and r are parallel.

4



2 Equations of Points, Lines and Planes

2.1 Position vector

A position vector is a vector bound to some origin and gives the position of a point relative

to that origin. It is often denoted by r (or
−→
OP or x).

O
r_ The equation for a point is simply r = a where a is some vector.

2.2 The Equation of a Line

Suppose that P lies on a line which passes through a point A which has a position vector a
with respect to an origin O. Let P have position vector r relative to O and let u be a vector
through the origin in a direction parallel to the line.

O

P

A

_

a_

r_u
We may write

r = a+ λu

which is the parametric equation of the line i.e. as we vary
the parameter λ from −∞ to ∞, r describes all points on the
line.

Rearranging and using u× u = 0, we can also write this as

(r − a)× u = 0

or

r × u = c

where c = a× u is normal to the plane containing the line and origin.

Physical example: If angular momentum L of a particle and its velocity v are known, we
still don’t know the position exactly because the solution of L = mr×v is a line r = r

0
+λv.

Notes

(i) r × u = c is an implicit equation for a line

(ii) r × u = 0 is the equation of a line through the origin.
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2.3 The Equation of a Plane

_

_ _vn

a r_ _

O

PA u
r is the position vector of an arbitrary point P on the plane
a is the position vector of a fixed point A in the plane
u and v are parallel to the plane but non-collinear: u×v 6= 0.

We can express the vector
−→
AP in terms of u and v, so that:

r = a+
−→
AP = a+ λu+ µv

for some λ and µ. This is the parametric equation of the plane.

We define the unit normal to the plane

n =
u× v
|u× v|

.

Since u · n = v · n = 0, we have the implicit equation

(r − a) · n = 0 .

Alternatively, we can write this as

r · n = p

where p = a · n is the perpendicular distance of the plane from the origin.

This is a very important equation which you must be able to recognise.

Note: r · n = 0 is the equation for a plane through the origin (with unit normal n).

2.4 Examples of Dealing with Vector Equations

Before going through some worked examples let us state two simple rules which will help
you to avoid many common mistakes

(i) Always check that the quantities on both sides of an equation are of the same type.
For example, any equation of the form vector = scalar is clearly wrong. (The only
exception to this is when we write vector = 0 instead of 0 .)

(ii) Never try to divide by a vector – there is no such operation!

6



Example 1: Is the following set of equations consistent?

r × b = c (1)

r = a× c (2)

Geometrical interpretation: the first equation is the (implicit) equation for a line whereas
the second equation is the (explicit) equation for a point. Thus the question is whether the
point is on the line. If we insert equation (2) for r into the LHS of equation (1) we find

r × b = (a× c)× b = −b× (a× c) = −a (b · c) + c (a · b) (3)

Now from (1) we have that b · c = b · (r × b) = 0 thus (3) becomes

r × b = c (a · b) (4)

so that, on comparing (1) and (4), we require

a · b = 1

for the equations to be consistent.

Example 2: Solve the following set of equations for r.

r × a = b (5)

r × c = d (6)

Geometrical interpretation: both equations are equations for lines, e.g. (5) is for a line
parallel to a where b is normal to the plane containing the line and the origin. The problem
is to find the intersection of two lines – assuming the equations are consistent and the lines
do indeed have an intersection.

Are these equations consistent? Take the scalar product of (5) with c, and of (6) with a:

(r × a) · c = b · c (7)

(r × c) · a = d · a (8)

Using the cyclic properties of the scalar triple product, we must have b · c = −d · a for
consistency.

To solve (5) and (6), we take the vector product of equation (5) with d, which gives

b× d = (r × a)× d = −d× (r × a) = −r (a · d) + a (d · r)

From (6) we see that d · r = r · (r × c) = 0, so the solution is

r = −
b× d
a · d

(for a · d 6= 0)

Alternatively, we could have taken the vector product of b with equation (6) to obtain

b× d = b× (r × c) = r (b · c)− c (b · r) .

From equation (5), we find b · r = 0, hence

r =
b× d
b · c

(for b · c 6= 0)

in agreement with our first solution (when b · c = −d · a)

7



What happens when a · d = b · c = 0? In this case the above approach does not give an
expression for r. However from (8) we see a · d = 0 implies that a · (r× c) = 0 so that a, c, r
are coplanar. We can therefore write r as a linear combination of a, c:

r = α a+ γ c . (9)

To determine the scalar α we can take the vector product with c to find

d = α a× c (10)

(because r × c = d from (6) and c × c = 0). In order to extract α we need to convert the
vectors in (10) into scalars. We do this by taking, for example, a scalar product with b

b · d = α b · (a× c)

so that

α =
−b · d

(a , b , c)
.

Similarly, one can determine γ by taking the vector product of (9) with a:

b = γ c× a

then taking a scalar product with b to obtain finally

γ =
b · b

(a , b , c)
.

Example 3: Solve for r the vector equation

r + (n · r) n+ 2n× r + 2b = 0 (11)

where n · n = 1.

In order to unravel this equation we can try taking scalar and vector products of the equation
with the vectors involved. However straight away we see that taking various products with
r will not help, since it will produce terms that are quadratic in r. Instead, we want to
eliminate (n · r) and (n× r) so we try taking scalar and vector products with n.

Taking the scalar product of n with both sides of equation (11) one finds

n · r + (n · r)(n · n) + 0 + 2n · b = 0

so that, since (n · n) = 1, we have
n · r = −n · b (12)

Taking the vector product of n with equation (11) gives

n× r + 0 + 2
[
n(n · r)− r

]
+ 2n× b = 0

so that
n× r = 2

[
n(b · n) + r

]
− 2n× b (13)

where we have used (12). Substituting (12) and (13) into (11) one (eventually) obtains

r =
1

5

[
−3(b · n)n+ 4(n× b)− 2b

]
(14)
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3 Vector Spaces and Orthonormal Bases

3.1 Review of linear vector spaces

Let V denote a linear vector space. Then vectors in V obey the following rules for addition
and multiplication by scalars

a+ b ∈ V if a, b ∈ V
αa ∈ V if a ∈ V

α(a+ b) = αa+ αb

(α + β)a = αa+ βa

The space contains a zero vector or null vector, 0, so that, for example a + (−a) = 0. We
usually omit the underline from the zero vector.

Of course as we have seen, vectors in IR3 (usual 3-dimensional real space) obey these axioms.
Other simple examples are a plane through the origin which forms a two-dimensional space
and a line through the origin which forms a one-dimensional space.

3.2 Linear Independence

Let a and b be two vectors in a plane through the origin, and consider the equation

αa+ βb = 0

If this is satisfied for non-zero α and β then a and b are said to be linearly dependent,

i.e. b = −α
β
a .

Clearly a and b are collinear (either parallel or anti-parallel).

If this equation can be satisfied only for α = β = 0, then a and b are linearly independent ;
they are obviously not collinear, and no λ can be found such that b = λa.

Notes

(i) If a, b are linearly independent then any vector r in the plane may be written uniquely
as a linear combination

r = αa+ βb

(ii) We say a, b span the plane, or a, b form a basis for the plane.

(iii) We call (α, β) a representation of r in the basis formed by a, b , and we say that α, β
are the components of r in this basis.

9



In three dimensions three vectors are linearly dependent if we can find non-trivial α, β, γ
(i.e. not all zero) such that

αa+ βb+ γc = 0

otherwise a, b, c are linearly independent (no one is a linear combination of the other two).

Notes

(i) If a, b and c are linearly independent they span IR3 and form a basis, i.e. for any vector
r we can find scalars α, β, γ such that

r = αa+ βb+ γc .

(ii) The triple of numbers (α, β, γ) is the representation of r in this basis, and α, β, γ are
the components of r in this basis.

(iii) The geometrical interpretation of linear dependence in three dimensions is that

three linearly dependent vectors ⇔ three coplanar vectors

To see this, note that if αa+ βb+ γc = 0 then

for α 6= 0 : a · (b× c) = 0 ⇒ a, b, c are coplanar

for α = 0 : b is collinear with c ⇒ a, b, c are coplanar

These ideas can be generalised to vector spaces of arbitrary dimension. For a space of
dimension n one can find at most n linearly independent vectors.

3.3 Standard orthonormal basis: Cartesian basis

A basis in which the basis vectors are orthogonal and normalised (of unit length) is called
an orthonormal basis.

You have already have encountered the idea of Cartesian coordinates in which points in
space are labelled by coordinates (x, y, z). As usual, we introduce orthonormal basis vectors
denoted by i, j and k or ex, e y and e z which point along the x, y and z-axes, respectively.
It is usually understood that the basis vectors are related by the right-hand screw rule, with
i× j = k and so on, cyclically.

In the ‘xyz’ notation the components of a vector a are ax, ay, az, and a vector is written in
terms of the basis vectors as

a = ax i+ ay j + az k or a = ax ex + a y e y + a z e z .

Also note that in this basis the basis vectors themselves are represented by

i = ex = (1, 0, 0) j = e y = (0, 1, 0) k = e z = (0, 0, 1)

In the following we shall sometimes use the ‘xyz’ notation but very rarely the ‘ijk’ notation.
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3.4 Introduction to Suffix or Index notation

A more systematic labelling of orthonormal basis vectors for IR3 is to use e 1, e 2 and e 3.
Instead of i we write e 1, instead of j we write e 2, and instead of k we write e 3. Then, from
the definition of the scalar product in Section (1.3), we get

e 1 · e 1 = e 2 · e 2 = e 3 · e 3 = 1 and e 1 · e 2 = e 2 · e 3 = e 3 · e 1 = 0 (15)

Similarly the components of any vector a in 3-d space are denoted by a1, a2 and a3.

This scheme is known as the suffix or index notation. Its great advantages over ‘xyz’ notation
are that it clearly generalises easily to any number of dimensions, and it greatly simplifies
manipulations and the verification of various identities (see later in the course).

-
i

6k

�
��3

j

r = xi+ yj + zk

Old Notation

or

-
ex

6e z

�
��3

e y

r = x ex + y e y + z e z

-
e 1

6e 3

�
��3

e 2

New Notation

r = x1 e 1 + x2 e 2 + x3 e 3 ≡ r1 e 1 + r2 e 2 + r3 e 3

Thus any vector a is written in this new notation as

a = a1 e 1 + a2 e 2 + a3 e 3 =
3∑
i=1

a i e i .

The last summation will often be abbreviated to a =
∑
i

a i e i

Notes

(i) The three numbers a i, i = 1, 2, 3, are called the (Cartesian) components of a with
respect to the basis set {e i}.

(ii) We may write a =
3∑
i=1

a i e i =
3∑
j=1

a j e j =
3∑

α=1

aα eα where the summed indices i, j, α

are called ‘dummy’, ‘repeated’ or ‘summation’ indices. We can choose any letter for
them.

(iii) The components ai of a vector a may be obtained using the orthonormality properties
of equation (15):

a · e 1 = (a1 e 1 + a2 e 2 + a3 e 3) · e 1 = a1

a1 is the projection of a in the direction of e 1.
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Similarly for the components a2 and a3. So in general we may write

a · e i = a i or sometimes (a)i

where in this equation i is a ‘free’ index and may take values i = 1, 2, 3. In this way
we are in fact condensing three equations into one.

(iv) In terms of these components, the scalar product is

a · b = (a1 e 1 + a2 e 2 + a3 e 3) · (b1 e 1 + b2 e 2 + b3 e 3)

Using the orthonormality of the basis vectors (equation (15)), this becomes

a · b =
3∑
i=1

a i bi

In particular the magnitude of a vector is now

a = |a| = √a · a =
√
a2

1 + a2
2 + a2

3 .

(v) From Notes 3 and 4 above we can define direction cosines l1, l2, l3 of the vector a
as the cosines of the angles between the vector and the basis axes, namely

li ≡ cos θi =
a · ei
a

=
ai
a
, i = 1, 2, 3 .

It follows that
3∑
i=1

l2i ≡ l21 + l22 + l23 = 1 .

If a has direction cosines li , b has direction cosines mi , and θ is the angle between a
and b, then

a · b =
3∑
i=1

aibi = ab

3∑
i=1

limi = ab cos θ ,

or

cos θ =
3∑
i=1

limi .

4 Using Suffix Notation

4.1 Free Indices and Summation Indices

Consider, for example, the vector equation

a− (b · c) d+ 3n = 0 (16)
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The basis vectors are linearly independent, so this equation must hold for each component
separately

ai − (b · c) di + 3ni = 0 for i = 1, 2, 3 (17)

The free index i occurs once and only once in each term of the equation. In general every
term in the equation must be of the same kind, i.e. have the same free indices.

Now suppose that we want to write the scalar product that appears in the second term of
equation (17) in suffix notation. As we have seen, summation indices are ‘dummy’ indices
and can be relabelled. For example

b · c =
3∑
i=1

bici =
3∑

k=1

bkck

This freedom should always be used to avoid confusion with other indices in the equation.
In this case, we avoid using i as a summation index, as we have already used it as a free
index, and rewrite equation (17) as

ai −

(
3∑

k=1

bkck

)
di + 3ni = 0 for i = 1, 2, 3

rather than

ai −

(
3∑
i=1

bici

)
di + 3ni = 0 for i = 1, 2, 3

which would lead to great confusion and inevitably lead to mistakes when the brackets are
removed – as they will be very soon.

4.2 Handedness of Basis

In the usual Cartesian basis that we’ve considered up to now, the basis vectors e 1, e 2, and
e 3 form a right-handed basis: e 1 × e 2 = e 3, e 2 × e 3 = e 1, e 3 × e 1 = e 2.

However, we could choose e 1 × e 2 = −e 3, and so on, in which case the basis is said to be
left-handed.

-
e 1

6e 3

�
��3

e 2

Right handed

-
e 1

6e 2

�
��3

e 3

Left handed

e 3 = e 1 × e 2

e 1 = e 2 × e 3

e 2 = e 3 × e 1

(e 1, e 2, e 3) = 1

e 3 = e 2 × e 1

e 1 = e 3 × e 2

e 2 = e 1 × e 3

(e 1, e 2, e 3) = − 1
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4.3 The Vector Product in a right-handed basis

a× b =

(
3∑
i=1

ai e i

)
×

(
3∑
j=1

bj e j

)
=

3∑
i=1

3∑
j=1

ai bj (e i × e j) .

Since e 1 × e 1 = e 2 × e 2 = e 3 × e 3 = 0, and e 1 × e 2 = −e 2 × e 1 = e 3, etc, we have

a× b = e 1(a2b3 − a3b2) + e 2(a3b1 − a1b3) + e 3(a1b2 − a2b1) (18)

from which we deduce that
(a× b)1 = a2b3 − a3b2 , etc.

Notice that the right-hand side of equation (18) corresponds to the expansion of the deter-
minant ∣∣∣∣∣∣

e 1 e 2 e 3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
by the first row (see the next section for some properties of determinants.)

4.4 Determinants and the scalar triple product

We may label the elements of a 3× 3 array of numbers or matrix A by aij (or alternatively
by Aij) where i labels the row and j labels the column in which aij appears

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Then the determinant of the matrix A is defined as

detA ≡

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

It is now easy to write down an expression for the scalar triple product

a · (b× c) =
3∑
i=1

ai (b× c)i

= a1(b2c3 − c2b3)− a2(b1c3 − c1b3) + a3(b1c2 − c1b2)

=

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
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Some properties of the determinant

An alternative expression for the determinant is given by noting that

detA = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11(a22a33 − a23a32)− a21(a12a33 − a32a13) + a31(a12a23 − a22a13)

=

∣∣∣∣∣∣
a11 a21 a31

a12 a22 a32

a13 a23 a33

∣∣∣∣∣∣
Evidently, the rows and columns of the matrix can be interchanged or transposed without
changing the determinant. This may be written more elegantly by defining the transpose
AT of a matrix A as the matrix with elements (AT )ij = aji. Then

detA = detAT .

The symmetry properties of the determinant may be deduced from the scalar triple prod-
uct (STP) by noting that interchanging two adjacent vectors in the STP is equivalent to
interchanging two adjacent rows (or columns) of the determinant and changes its value by
a factor −1. Also adding a multiple of one row (or column) to another does not change the
value of detA.

4.5 Summary of the algebraic approach to vectors

We are now able to define vectors and the various products of vectors in an algebraic way
(as opposed to the geometrical approach of lectures 1 and 2).

A vector is represented (in some orthonormal basis e 1, e 2, e 3) by an ordered set of 3 numbers
with certain laws of addition. For example

a is represented by (a1, a2, a3)

a+ b is represented by (a1 + b1, a2 + b2 , a3 + b3) .

The various ‘products’ of vectors are now defined as follows:

The Scalar Product is denoted by a · b and defined as

a · b ≡
∑
i

aibi

a · a = a2 defines the magnitude a of the vector.

The Vector Product is denoted by a× b and defined in a right-handed basis as

a× b ≡

∣∣∣∣∣∣
e 1 e 2 e 3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
The Scalar Triple Product

(a, b, c) ≡
∑
i

ai (b× c)i =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
In all the above formula the summations imply sums over each index taking values 1, 2, 3.
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4.6 The Kronecker delta symbol δij

We define the symbol δij (pronounced “delta i j”), where i and j can take on the values
1, 2, 3, as follows

δij = 1 when i = j

= 0 when i 6= j

i.e. δ11 = δ22 = δ33 = 1 and δ12 = δ13 = δ23 = · · · = 0.

The equations satisfied by the three orthonormal basis vectors e i can now be written as

e i · e j = δij

e.g. e 1 · e 2 = δ12 = 0 , e 1 · e 1 = δ11 = 1

Notes

(i) Since there are two free indices i and j, e i · e j = δij is equivalent to 9 equations.

(ii) δij = δji. We say δij is symmetric in its indices.

(iii)
3∑
i=1

δii = δ11 + δ22 + δ33 = 3

(iv)
3∑
j=1

ajδjk = a1δ1k + a2δ2k + a3δ3k

To go further, first note that k is a free index.

If k = 1, then only the first term on the RHS contributes and the RHS = a1. Similarly,
if k = 2 then the RHS = a2, and if k = 3 the RHS = a3. Hence

3∑
j=1

ajδjk = ak

In other words, Kronecker delta δjk picks out the kth term in the sum over j.

Generalising the reasoning in 4 implies the so-called sifting property of Kronecker delta

3∑
j=1

(anything)j δjk = (anything )k

where (anything)j denotes any expression that has a single free index j.
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Matrix representation: δij may be thought of as the elements of a 3× 3 unit matrix δ11 δ12 δ13

δ21 δ22 δ33

δ31 δ32 δ33

 =

 1 0 0
0 1 0
0 0 1

 = I

In other words, δij is the ijth element of the unit matrix I, i.e. Iij = δij.

Examples of the use of Kronecker delta

1. a · e j =

(
3∑
i=1

ai e i

)
· e j =

3∑
i=1

ai (e i · e j)

=
3∑
i=1

aiδij = aj because terms with i 6= j vanish.

2. a · b =

(
3∑
i=1

ai e i

)
·

(
3∑
j=1

bj e j

)

=
3∑
i=1

3∑
j=1

aibj (e i · e j) =
3∑
i=1

3∑
j=1

aibjδij

=
3∑
i=1

aibi

(
or

3∑
j=1

ajbj

)

5 More About Suffix Notation

5.1 The Einstein Summation Convention

The novelty of writing out summations soon wears thin. The standard way to avoid this
tedium is to adopt the Einstein summation convention. By adhering strictly to the following
conventions or “rules” the summation signs are suppressed completely.

Rules of the summation convention

(i) Omit all summation signs.

(ii) If a suffix appears twice, a summation is implied, e.g. aibi = a1b1 + a2b2 + a3b3 .

Here i is a dummy or repeated index.

(iii) If a suffix appears only once it can take any value e.g. ai = bi holds for i = 1, 2, 3.

Here i is a free index. Note that there may be more than one free index.

Always check that the free indices match on both sides of an equation.
For example, aj = bi is WRONG.

(iv) A given suffix must not appear more than twice in any term in an expression.

Always check that there aren’t more than two identical indices e.g. aibici is simply
WRONG.
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Examples

a = ai e i (i is a dummy index)

a · e j = ai e i · e j = aiδij = aj (i is a dummy index, but j is a free index)

a · b = (ai e i) · (bj e j) = aibjδij = ajbj (i, j are both dummy indices)

(a · b)(a · c) = aibiajcj (again i, j are dummy indices)

Armed with the summation convention one can rewrite many of the equations from the
previous sections without summation signs, e.g. the sifting property of δij now becomes

[. . .]j δjk = [. . .]k

The repeated index j is implicitly summed over, so that, for example, δijδjk = δik.

From now on, except where indicated, the summation convention will be assumed.
You should make sure that you are completely at ease with it.

5.2 Levi-Civita Symbol εijk

We have seen how δij can be used to express the orthonormality of basis vectors succinctly.

We now seek to make a similar simplification for the vector products of basis vectors (taken
here to be right handed), i.e. we seek a simple, uniform way of writing the equations

e 1 × e 2 = e 3 e 2 × e 3 = e 1 e 3 × e 1 = e 2

e 1 × e 1 = 0 e 2 × e 2 = 0 e 3 × e 3 = 0

To do so we define the Levi-Cevita or ‘epsilon symbol’ εijk (pronounced ‘epsilon i j k’ ), where
i, j and k can take on the values 1 to 3, such that

εijk = +1 if ijk is an even permutation of 123

= −1 if ijk is an odd permutation of 123

= 0 otherwise (i.e. 2 or more indices are the same)

An even permutation consists of an even number of transpositions of two indices;
An odd permutation consists of an odd number of transpositions of two indices.

Examples: ε123 = +1

ε213 = −1 {since (123) → (213) under one transposition [1 ↔ 2]}
ε312 = +1 {(123) → (132) → (312); 2 transpositions; [2 ↔ 3][1 ↔ 3]}
ε113 = 0 ; ε111 = 0 ; etc.

ε123 = ε231 = ε312 = +1 ε213 = ε321 = ε132 = −1 all others = 0
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Note the symmetry of εijk under cyclic permutations

εijk = εkij = εjki = −εjik = −εikj = −εkji (19)

This holds for all values of i, j and k. To understand it, note that

(i) If any two of the free indices i, j, k are the same, all terms vanish.

(ii) If (ijk) is an even (odd) permutation of (123), then so are (jki) and (kij), but (jik),
(ikj) and (kji) are odd (even) permutations of (123).

Each of equations (19) has three free indices so they each represent 27 equations.
E.g. in εijk = εkij, 3 equations say ‘1 = 1’, 3 equations say ‘−1 = −1’, and 21 equations say
‘0 = 0’.

5.3 Vector product

The equations satisfied by the vector products of the (right-handed) orthonormal basis vec-
tors e i can now be written uniformly as

e i × e j = εijk e k ∀ i, j = 1,2,3

where there is an implicit sum over the ‘dummy’ or ‘repeated’ index k. For example,

e 1 × e 2 = ε121 e 1 + ε122 e 2 + ε123 e 3 = e 3 e 1 × e 1 = ε111 e 1 + ε112 e 2 + ε113 e 3 = 0

Now consider
a× b = ai bj e i × e j = εijk aibj e k

but, by definition, we also have
a× b = (a× b)k e k

therefore

(a× b)k = εijk aibj

Note that we are using the summation convention. For example, writing out the sums

(a× b)3 = ε113 a1b1 + ε123 a2b3 + ε133 a3b3 + ε213 a2b1 + · · ·
= ε123 a1b2 + ε213 a2b1 (plus terms that are zero)

= a1b2 − a2b1

We can use the cyclic symmetry of the ε symbol to find an alternative form for the components
of the vector product

(a× b)k = εijk aibj = εkij aibj ,

or relabelling the dummy indices k → i, i→ j, j → k

(a× b)i = εijk ajbk

which is (probably) the most useful form.
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The scalar triple product can also be written using εijk

(a, b, c) = a · (b× c) = ai(b× c)i
giving

(a, b, c) = εijk aibjck

As an exercise in index manipulation we can prove the cyclic symmetry of the scalar product

(a, b, c) = εijk aibjck

= −εikj aibjck (interchanging two indices of εijk)

= +εkij aibjck (interchanging two indices again)

= εijk ajbkci (relabelling indices k → i, i→ j, j → k)

= εijk ciajbk

= (c, a, b)

5.4 Product of two Levi-Civita symbols

We have already shown geometrically that

a× (b× c) = (a · c)b− (a · b)c

This be derived independently using components. For example,

[a× (b× c)]1 = a2 (b× c)3 − a3 (b× c)2

= a2 (b1c2 − b2c1)− a3 (b3c1 − b1c3)

= b1 (a2c2 + a3c3)− c1 (a2b2 + a3b3)

= b1 (a1c1 + a2c2 + a3c3)− c1 (a1b1 + a2b2 + a3b3)

= b1 (a · c)− c1 (a · b)

From this equality we deduce that there must be a relation between two ε symbols (because
there are two cross products) and some number of δ symbols. Consider

[a× (b× c)]i = εijkaj (b× c)k
= εijkaj εklm bl cm

= εijk εklm aj bl cm

Alternatively

[(a · c)b− (a · b)c]i = (a · c) bi − (a · b) ci
= (aj cm δjm) δil bl − (aj bl δjl) δim cm

= (δil δjm − δim δjl) aj bl cm .

These equations must be equal for all components aj, bl, cm independently, so we must have

εijk εklm = δil δjm − δim δjl

This is a very important result and must be learnt by heart.
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To verify it, one can check all possible cases. For example

ε12k εk12 = ε121 ε112 + ε122 ε212 + ε123 ε312 = 1 = δ11δ22 − δ12δ21

However as we have 34 = 81 equations, 6 saying ‘1 = 1’, 6 saying ‘−1 = −1’, and 69 saying
0 = 0’, this will take some time. More generally, note that the left hand side of the boxed
equation may be written out as

• εij1 ε1lm + εij2 ε2lm + εij3 ε3lm where i, j, l,m are free indices;

• for this to be non-zero we must have i 6= j and l 6= m;

• only one term of the three in the sum can be non-zero;

• if i = l and j = m we have +1, if i = m and j = l we have −1.

Example: Simplify (a× b) · (c× d) using suffix notation.

(a× b) · (c× d) = (a× b)i (c× d)i = εijk aj bk εilm cl dm

= (δjl δkm − δjm δkl) aj bk cl dm = aj bk cj dk − aj bk ck dj
= (a · c) (b · d) − (a · d) (b · c)

where we used the cyclic property εijk = εjki to obtain the second line.

5.5 Determinants using the Levi-Civita symbol

The result for the scalar triple product gives another expression for the determinant∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ =
(
a, b, c

)
= εijk ai bj ck . (20)

Consider the 3× 3 matrix A, with elements aij

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


Relabelling the rows in the matrix in equation (20): ai → a1i, bi → a2i, ci → a3i gives

detA = εijk a1i a2j a3k

which may be taken as the definition of a determinant.

An alternative expression is given by noting that previously we showed that∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a11 a21 a31

a12 a22 a32

a13 a23 a33

∣∣∣∣∣∣ or detA = detAT

where ATij = aji so now detA = detAT = εijkA
T
1iA

T
2j A

T
3k which may be rewritten
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detA = εijk ai1 aj2 ak3

The other properties of determinants can be proved easily: namely interchanging two rows
or columns changes the sign of the determinant and adding a multiple of one row/column
to another row/column respectively does not change the value of the determinant (exercises
for the student).

For completeness, we quote here one further important result

detAB = detA detB

[The definition of matix multiplication is given in Section (6.3).] The proof of this result is
discussed in an example sheet.

6 Change of Basis

6.1 Linear Transformation of Basis

Suppose {e i} and {e i′} are two different orthonormal bases. How do we relate them?

Clearly e 1
′ can be written as a linear combination of the vectors e 1, e 2, e 3. Let us write the

linear combination as
e 1
′ = `11 e 1 + `12 e 2 + `13 e 3

with similar expressions for e 2
′ and e 3

′. Hence we may write

e i
′ = `ij e j (21)

where we are using the summation convention. The nine numbers `ij, with i, j = 1, 2, 3,
relate the basis vectors e 1

′, e 2
′, e 3

′ to the basis vectors e 1, e 2, e 3.

Notes

(i) The nine numbers `ij define the change of basis or ‘linear transformation’.

(ii) To determine `ij, consider the quantity

e i
′ · e j = (`ik e k) · e j = `ik δkj = `ij .

Therefore

e i
′ · e j = `ij (22)

so `ij are the projections (or direction cosines) of e i
′ (i = 1, 2, 3) onto the e

i
basis.
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(iii) The basis vectors e i
′ are orthonormal, therefore

e i
′ · e j′ = δij

The LHS of this equation may be written as

e i
′ · e j′ = (`ik e k) · (`jl e l) = `ik `jl (e k · e l) = `ik `jl δkl = `ik `jk

where we used the sifting property of δkl in the final step. Hence

`ik`jk = δij (23)

6.2 Inverse Relations

Let us now express the unprimed basis in terms of the primed basis. If we write

e i = mij e j
′

then
`ij = e i

′ · e j = e i
′ ·
(
mjk e k

′) = mjk δik = mji

and we deduce that
mij = `ji (24)

The e i are orthonormal so e i · e j = δij. The LHS of this equation may be re-written

e i · e j =
(
mik e k

′) · (mjl e l
′) = mikmjl δkl = mikmjk = `ki `kj

and we obtain a second relation

`ki`kj = δij (25)

6.3 The Transformation Matrix

Let us re-write the above results using a matrix notation.

First note that the summation convention can be used to describe matrix multiplication. The
ijth component of the product of two 3 × 3 matrices A and B is obtained by ‘multiplying
the ith row of A into the jth column of B’, namely

(AB)ij = ai1 b1j + ai2 b2j + ai3 b3j = aik bkj (26)

Likewise, recalling the definition of the transpose of a matrix (AT )ij = Aji (or aji),

(ATB)ij = (AT )ik (B)kj = akibkj (27)

We may identify the nine numbers `ij as the elements of a square matrix, denoted by L, and
known as the transformation matrix

L =

 `11 `12 `13

`21 `22 `23

`31 `32 `33
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Equation (24) then tells us that M = LT is the transformation matrix for the inverse
transformation.

Comparing equation (23) with equation (26), and equation (25) with equation (27), and
recalling that δij is the ijth element of the unit matrix I, we see that the relations `ik `jk =
`ki `kj = δij can be written in matrix notation as

LLT = LTL = I and hence L−1 = LT

where L−1 is the matrix inverse of L.

A matrix that satisfies these conditions is called an orthogonal matrix, and the transformation
(from the e i basis to the e i

′ basis) is called an orthogonal transformation.

Now from e i
′ = `ij ej, we have for the scalar triple product (assuming e i is a RH basis)(

e 1
′, e 2

′, e 3
′) = e 1

′ ·
(
e 2
′ × e 3

′)
= `1i e i · (`2j e j × `3k e k)

= `1i `2j `3k e i · (e j × e k)
= `1i `2j `3k e i · (εljk e `)
= `1i `2j `3k εljk δil

= εijk `1i `2j `3k = detL

So

detL =
(
e 1
′, e 2

′, e 3
′) =

{
+1 if primed basis is RH
−1 if primed basis is LH

We say

If detL = +1 the orthogonal transformation is ‘proper’

If detL = −1 the orthogonal transformation is ‘improper’

An alternative proof uses the following properties of determinants: detAB = detA detB
and detAT = detA. These, together with det I = 1, give

detLLT = detL detLT = (detL)2 = 1 ,

hence detL = ±1.
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6.4 Examples of Orthogonal Transformations

Rotation about the e 3 axis: We have e 3
′ = e 3 and thus for a rotation through θ,

_

θ

θ

_e

e

e

e_

_

2
2

1

1
O

’

’
e 3
′ · e 1 = e 1

′ · e 3 = e 3
′ · e 2 = e 2

′ · e 3 = 0 , e 3
′ · e 3 = 1

e 1
′ · e 1 = cos θ

e 1
′ · e 2 = cos (π/2− θ) = sin θ

e 2
′ · e 2 = cos θ

e 2
′ · e 1 = cos (π/2 + θ) = − sin θ

Thus

L =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .

It is easy to check that LLT = I. Since detL = cos2 θ + sin2 θ = 1, this is a proper
transformation. Note that rotations cannot change the handedness of the basis vectors.

Inversion or Parity transformation: This is defined by e i
′ = −e i, i = 1, 2, 3.

i.e. `ij = −δij or L =

 −1 0 0
0 −1 0
0 0 −1

 = −I .

Clearly LLT = I. Since detL = −1, this
is an improper transformation. Note that
the handedness of the basis is reversed:
e 1
′ × e 2

′ = −e 3
′

_

_e

e

e_
1

2

3

RH basis

e_
1

e_
2

e_
3

LH basis

’

’

’

L

Reflection: Consider reflection of the axes in e 2−e 3 plane so that e 1
′ = −e 1, e 2

′ = e 2

and e 3
′ = e 3. The transformation matrix is

L =

 −1 0 0
0 1 0
0 0 1


Since detL = −1, this is an improper transformation, therefore the handedness of the basis
changes.
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6.5 Products of Transformations

Consider a transformation L to the basis {e i′} followed by a transformation M to another
basis {e i′′}

e i
L
→ e i

′ M
→ e i

′′

Clearly there must be an orthogonal transformation e i
N
→ e i

′′. To find it, we write

e i
′′ = mij e j

′ = mij `jk e k = (ML)ik e k so N = ML

Notes

(i) Note the order of the product: the matrix corresponding to the first change of basis
stands to the right of that for the second change of basis. In general, transformations
do not commute, i.e. ML 6= LM .

Example: a rotation of θ about e 3 followed by a reflection in the e 2−e 3 plane. −1 0 0
0 1 0
0 0 1

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 =

 − cos θ − sin θ 0
− sin θ cos θ 0

0 0 1


whereas if we reverse the order cos θ sin θ 0

− sin θ cos θ 0
0 0 1

 −1 0 0
0 1 0
0 0 1

 =

 − cos θ sin θ 0
sin θ cos θ 0

0 0 1


(ii) The inversion and the identity transformations commute with all transformations.

6.6 Improper Transformations

We may write any improper transformation M (for which detM = −1) as M = (−I)L,
where L = −M and detL = +1. Thus an improper transformation can always be expressed
as a proper transformation followed by an inversion.

Example: The matrix M for a reflection in the e 1−e 3 plane is 1 0 0
0 −1 0
0 0 1

 =

 −1 0 0
0 −1 0
0 0 −1

 −1 0 0
0 1 0
0 0 −1


Identifying L from M = (−I)L we see that L is a rotation of π about e 2.

- e 1

6e 3

��
��*

e 2

→
L

�
e 1
′

?e 3
′

��
��*

e 2
′

→
−I

-
e 1
′′

6e 3
′′

�
����

e 2
′′
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6.7 Summary

If detL = +1 we have a proper orthogonal transformation which is equivalent to rotation of
axes. It can be proven that any rotation is a proper orthogonal transformation and vice-versa.
The essence of the proof is that any rotation through a finite angle θ can be continuously
connected to an infinitesimal or zero rotation for which detL = det I = 1 trivially, whereas
detL = 1 7→ detL = −1 is discontinuous.

If detL = −1 we have an improper orthogonal transformation which is equivalent to rotation
of axes then inversion. This is known as an improper rotation since it changes the handedness
of the basis.

7 Transformation Properties of Vectors and Scalars

7.1 Transformation of vector components

Let a be any vector, with components ai in the basis {e i} and a′i in the basis {e i′} i.e.

a = ai e i = a′i e i
′ .

The components are related as follows, taking care with dummy indices

a′i = a · e i′ = (aj e j) · e i′ = (e i
′ · e j) aj = `ij aj

a′i = `ij aj

ai = a · e i = (a′k e k
′) · e i = `ki a

′
k = (LT )ik a

′
k.

Note carefully that the vector a does not change

Therefore we do not put a prime on the vector itself. However, the components of this vector
are different in different bases, and so are denoted by ai in the basis {e i}, and by a′i in the
basis {e i′}, and so on.

These transformations are called passive transformations : the basis is transformed, but the
vector remains fixed. Alternatively we can keep the basis fixed and transform the vector,
this is an active transformation. They are equivalent (and indeed one is just the inverse of
the other). In this course we shall only consider the passive viewpoint (to avoid confusion).

In matrix form we can write the transformation of components as a′1
a′2
a′3

 =

 `11 `12 `13

`21 `22 `23

`31 `32 `33

 a1

a2

a3

 = L

 a1

a2

a3
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and since L−1 = LT  a1

a2

a3

 = LT

 a′1
a′2
a′3


Example: Consider a rotation of the axes about e 3 a′1

a′2
a′3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 a1

a2

a3

 =

 cos θ a1 + sin θ a2

cos θ a2 − sin θ a1

a3


A direct check of this using trigonometric considerations is significantly harder!

7.2 Transformation of the scalar product

Let a and b be vectors with components ai and bi in the {e i} basis, and components a′i and
b′i in the {e i′} basis. In the {e i} basis, the scalar product, denoted by a · b, is

a · b = ai bi .

In the basis {e i′}, we denote the scalar product by (a · b) ′, and we have

(a · b) ′ = a′i b
′
i = `ij aj `ik bk = δjkajbk

= aj bj = a · b .

Thus the scalar product is the same when evaluated in any basis. This is of course expected
from the geometrical definition of scalar product which is independent of basis. We say that
the scalar product is invariant under a change of basis.

Summary: We have now obtained an algebraic definition of scalar and vector quantities.

Under the orthogonal transformation from the basis {e i} to the basis {e i′}, defined by the
transformation matrix L such that e i

′ = `ij e j, we have that:

• A scalar is a single number φ which is invariant:

φ′ = φ

Of course, not all scalar quantities in physics are expressible as the scalar product of
two vectors e.g. mass, temperature.

• A vector is an ‘ordered triple’ of numbers ai which transforms to a′i such that

a′i = `ijaj
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7.3 Transformation of the vector product

Great care is needed with the vector product under improper transformations.

Inversion: Let e i
′ = −e i, so `ij = −δij and hence a′i = −ai and b′i = −bi. Therefore

a′i e i
′ = (−ai) (−e i) = ai e i = a and b′i e i

′ = (−bi) (−e i) = bi e i = b

The vectors a and b are unchanged by the transformation – as they should be.

However if we calculate the vector product c = a× b in the new basis using the determinant
formula, we obtain∣∣∣∣∣∣

e 1
′ e 2

′ e 3
′

a′1 a′2 a′3
b′1 b′2 b′3

∣∣∣∣∣∣ = (−1)3

∣∣∣∣∣∣
e 1 e 2 e 3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
e 1 e 2 e 3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
which is −c as calculated in the original basis!

The explanation is that if {e i} is a RH basis, then {e i′} is a LH basis because L is an improper
transformation. The formula we used for the vector product holds in a right-handed basis.
If we use this formula in a left-handed basis, the direction of the vector product is reversed
(it is equivalent to using a left-hand rule rather than a right-hand rule to calculate the vector
product).

Let us then define the components of c = a× b as

ci ≡ (a× b)i = εijkajbk

in any orthonormal basis (LH or RH). This is equivalent to using the determinant formula.
With this definition a, b and c have the same ‘handedness’ as the underlying basis.

General case: To derive the transformation law for the vector product for arbitrary L
requires several steps, and is not quite trivial.

In section (5.5), we showed that the determinant of a 3× 3 matrix A can be written as

detA = εijk ai1 aj2 ak3

This can be generalised to [see tutorial question (4.5)]

εrst detA = εijk air ajs akt

The extra ε on the LHS of this equation tells us that the determinant changes sign when we
swap two columns of the matrix. Applying this to the transformation matrix L gives

εrst detL = εijk `ir `js `kt

Multiplying this equation by `lt and using the orthogonality relation `lt `kt = δlk, gives

(detL) εrst `lt = εijl `ir `js.

Relabelling the free index l 7→ k gives
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(detL) εrst `kt = εijk `ir `js

We can now calculate the transformation law for the components of the vector product.
Recalling that a′j = `jr ar and b′k = `ks bs, we find

(a× b)′i = εijk a
′
j b
′
k = εijk `jr `ks ar bs = εjki `jr `ks ar bs

= (detL) εrst `it ar bs = (detL) `it (εtrs ar bs)

where we used the last boxed identity (relabelling a lot of indices - exercise!) to get the first
expression in the second line. Finally, we have

(a× b)′i = (detL) `it (a× b)t

So the vector product transforms just like a vector under proper transformations, for which
detL = +1, but it picks up an extra minus sign under improper transformations, for which
detL = −1.

The vector product is an example of what is known as a pseudovector or axial vector.

In general, a pseudovector c is defined by the transformation law

c′i = (detL) `ij cj

You should know this result, but the detailed derivation is a bit tough, so you wouldn’t be
expected to reproduce it in an examination.

Physical Examples

The following are true or polar vectors:

Position r

Velocity v = ṙ where r = r(t), and ṙ ≡
dr

dt
(t is a scalar)

Acceleration a = v̇

Force F = ma (defined by Newton’s law)

Electric field E =
1

q
F (where F is the force on a particle of charge q)

The following are pseudo or axial vectors:

Angular momentum L = r ×mv
Torque T = r × F
Angular velocity (ω) v = ω × r
Magnetic field (B) F = q v ×B (where F is the force on a particle of

charge q and velocity v due to B)
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7.4 Summary of the story so far

We now take the opportunity to summarise some key-points of the course thus far.

NB this is NOT a list of everything you need to know!

Key points from the geometrical approach

You should recognise on sight that

r × u = c is a line (r lies on a line)

r · n = p is a plane (r lies in a plane)

Useful properties of scalar and vector products to remember

a · b = 0 ⇔ vectors orthogonal

a× b = 0 ⇔ vectors collinear

a · (b× c) = 0 ⇔ vectors co-planar or linearly dependent

a× (b× c) = (a · c)b− (a · b)c

Key points of suffix notation and the summation convention

We label orthonormal basis vectors by e 1, e 2, e 3 (or just {e i}), and write the expansion of
a vector a as

a = ai e i

(
≡

3∑
i=1

ai e i

)
There is always an implicit sum over any repeated or dummy index, i in this case.

The Kronecker delta symbol δij can be used to express the orthonormality of the basis

e i · e j = δij

Kronecker delta has a very useful sifting property

[· · · ]jδjk = [· · · ]k
Whether the basis is right- or left-handed is determined by

(e 1, e 2, e 3) = ±1

We introduce εijk to enable us to write the vector products of basis vectors in a RH basis in
a uniform way

e i × e j = εijk e k .

The vector and scalar triple products in any orthonormal basis are

a× b =

∣∣∣∣∣∣
e 1 e 2 e 3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ or equivalently (a× b)i = εijkajbk

a · (b× c) =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ or equivalently a · (b× c) = εijkaibjck

31



The most important identity in the game is

εijk εklm = δil δjm − δim δjl

Key points of the algebraic approach to change of basis

The new basis is written in terms of the old through

e i
′ = `ij e j where `ij are elements of the 3× 3 transformation matrix L

L is an orthogonal matrix, the defining property of which is L−1 = LT , and this can be
written as

LLT = LTL = I or `ik`jk = `ki`kj = δij

The determinant detL = ±1 tells us whether the transformation is proper or improper, i.e.
whether the handedness of the basis is changed.

A scalar is defined as a number that is invariant under an orthogonal transformation.

A vector is defined as an object a represented in a basis by three numbers ai which transform
to a′i through

a′i = `ijaj.

or in matrix form  a′1
a′2
a′3

 = L

 a1

a2

a3


Regarding a and a′ as 3× 1 column matrices, this may be written succinctly as

a′ = La .
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8 Tensors of Second Rank

8.1 Nature of Physical Laws

The simplest physical laws are expressed in terms of scalar quantities which are independent
of our choice of basis, e.g. the ideal-gas law

pV = nRT

relating pressure, volume and temperature.

At the next level of complexity are laws relating vector quantities

F = ma Newton’s Law

J = σ E Ohm’s Law, J is the current density vector,

σ is conductivity (σ ∝ 1/R)

Notes

(i) These laws take the form vector = scalar × vector ;

(ii) They relate two vectors in the same direction.

Example: Consider Newton’s Law in a particular Cartesian basis {e i}. The acceleration
vector a is represented by its components {ai}, and the force F by its components {Fi}, so
we write

Fi = mai

In another basis {e i′} defined by e i
′ = `ij e j we have

F ′i = ma′i

where the set of numbers, {a′i}, is in general different from the set {ai}. Likewise, the set
{F ′i} differs from the set {Fi}, but they are of course related by

a′i = `ij aj and F ′i = `ij Fj .

We can think of F = ma as representing an infinite set of relations between measured
components in various bases. Because all vectors transform in the same way under orthogonal
transformations, the relations have the same form in all bases. We say that Newton’s Law,
expressed in component form, is form invariant or covariant.

8.2 Examples of more complicated laws

Ohm’s law in an anisotropic medium

The simple form of Ohm’s Law stated above, in which an applied electric field E produces
a current in the same direction, only holds for conducting media which are isotropic, that
is, the same in all directions. This is certainly not the case in crystalline media, where the
regular lattice will favour conduction in some directions more than in others.
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The most general relation between J and E which is linear and is such that J vanishes when
E vanishes is of the form

Ji = σijEj

where σij are the components of the conductivity tensor in the chosen basis; they characterise
the conduction properties when J and E are measured in that basis. Thus we need nine
numbers, σij, to characterise the conductivity of an anisotropic medium. The conductivity
tensor is an example of a second rank tensor.

Now consider an orthogonal transformation of basis. Simply changing basis cannot alter the
form of the physical law and so we conclude that

J ′i = σ′ijE
′
j where J ′i = `ijJj and E ′j = `jkEk

Thus we deduce that
`ij Jj = `ij σjk Ek = σ′ij `jk Ek

which we can rewrite as
(σ′ij `jk − `ij σjk)Ek = 0

This must be true for arbitrary electric fields Ek and hence

σ′ij `jk = `ij σjk

Multiplying both sides by `lk, noting that `lk`jk = δlj and using the sifting property we find
that σ′il = `ij `lk σjk or re-labelling

σ′ij = `ip `jq σpq

This exemplifies how the components of a second rank tensor change or transform under
an orthogonal transformation, and indeed will be taken as our definition of a second rank
tensor.

This discussion of the covariance of Ohm’s law is an example of the very general quotient
theorem (see Junior Honours Tensors and Fields.)

Kronecker delta as a tensor

Since Kronecker delta has two indices it is natural to ask whether it is a second rank tensor.

We defined δij to be 1 if i = j, and 0 otherwise, in all bases, and thus we have that δ′ij = δij.
Recalling that δij = `ip`jp, we may write

δ′ij = `ip `jq δpq

Since the nine-numbers δij transform as the components a second rank tensor, by our def-
inition above it is indeed a second-rank tensor. Since δ′ij = δij, we call it an invariant
tensor.
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Rotating rigid body

O

_

_r

_ω

θ

v

Consider a particle of mass m at a point r in a rigid body rotating
with angular velocity ω. Recall that v = ω × r. You were asked
in Lecture 1 to check that this gives the right direction for v; that
it is perpendicular to the plane of ω and r; that the magnitude
|v| = ωr sin θ = ω × (radius of the circle in which the point is
travelling.)

Now consider the angular momentum of the particle about the origin O; this is defined by
L = r × p = r × (mv) where m is the mass of the particle.

Using the above expression for v we obtain

L = mr × (ω × r) = m
[
ω(r · r)− r(r · ω)

]
(28)

where we have used the identity for the vector triple product. Note that only if r is perpen-
dicular to ω do we obtain L = mr2ω, which means that only then are L and ω in the same
direction.

Taking components of equation (28) in an orthonormal basis {e i}, we find that

Li = m
[
ωi (r · r)− xi (r · ω)

]
= m

[
r2 ωi − xi xj ωj

]
noting that r · ω = xj ωj

= m
[
r2 δij − xi xj

]
ωj using ωi = δij ωj

Thus

Li = Iij(O)ωj where Iij(O) = m [r2 δij − xi xj]

By the quotient theorem Iij(O) are the components of the (moment of) inertia tensor,
relative to the origin, O, in the e i basis. The inertia tensor is another example of a second
rank tensor. This may also be shown directly

I ′ij(O) = m[r′2 δ′ij − x′i x′j]

= m[r2 `ip `jq δpq − `ip xp `jq xq]
= `ip `jq Ipq(O)

i.e. I transforms as a second rank tensor.

Summary of why we need tensors

(i) Physical laws often relate two vectors.

(ii) A second rank tensor provides a linear relation between two vectors which may be in
different directions.

35



(iii) Tensors allow the generalisation of isotropic laws (‘physics is the same in all directions’)
to anisotropic laws (‘physics is different in different directions’)

In general, a second rank tensor maps a given vector onto a vector in a different direction.
If a vector n has components ni then

Tijnj = mi ,

where mi are components of m, the vector that n is mapped onto.

However, some special vectors called eigenvectors may exist such that mi = λni ,
i.e. the new vector is in the same direction as the original vector. Eigenvectors
usually have special physical significance (see later).

8.3 General properties

Scalars and vectors are called tensors of rank zero and rank one respectively, where rank =
number of indices in a Cartesian basis. Thus we have

φ′ = φ scalar

a′i = `ip ap vector

T ′ij = `ip`jq Tpq rank-two tensor

We can also have pseudoscalars, pseudovectors and pseudotensors,

φ′ = (detL)φ pseudoscalar

a′i = (detL) `ipap pseudovector

T ′ij = (detL) `ip`jqTpq rank-two pseudotensor

Let a, b and c be (true) vectors. An example of a pseudovector is a× b (see section 7.3), and
an example of a pseudoscalar is the scalar triple product:

(a, b, c)′ = a′i (b× c)′i
= `ip ap (detL) `iq (b× c)q
= (detL) ap(b× c)q δpq
= (detL) a · (b× c) = (detL) (a, b, c)

Note that if a is a vector and b is a pseudovector, then a× b is a vector because (detL)2 = 1.

We can also define tensors of rank greater than two by introducing more indices, together
with more `s. Indeed, ε is a pseudotensor of rank three.

Rank-two tensors have some additional special properties: the set of nine numbers, Tij,
representing the tensor T , can be written as a 3× 3 matrix

T =

 T11 T12 T13

T21 T22 T23

T31 T32 T33


This is of course not true for higher rank tensors (which have more than 9 components).
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We can rewrite the transformation law for a general second rank tensor as

T ′ij = `ip `jq Tpq = (L)ip Tpq (LT )qj

So the transformation law in matrix form is

T ′ = LTLT

Notes

(i) It is wrong to say that a second rank tensor is a matrix; rather the tensor is the
fundamental object and it is represented in a given basis by a matrix.

(ii) It is wrong to say a matrix is a tensor, e.g. the transformation matrix L is not a tensor
but nine numbers defining the transformation between two different bases.

8.4 Invariants

Trace of a tensor: the trace of a matrix A (whose elements are aij) is defined as the sum
of its diagonal elements

TrA = aii

Recalling that (AB)ik = aij bjk, we can derive the useful cyclic property of the trace

Tr (AB) = aijbji = bjiaij = Tr (BA)

Now consider the trace of the the tensor in the transformed basis:

TrT ′ = T ′ii = `ip`iqTpq = δpqTpq = Tpp = TrT

Thus evaluating the trace gives the same result in any basis, it is a scalar invariant. Alter-
natively using a matrix notation

TrT ′ = Tr (LTLT ) = Tr (TLTL) = TrT

Determinant: It is easiest to use the matrix form of the transformation law

detT ′ = det(LTLT ) = detL detT detLT = detT

(since detL = detLT = ±1.) Thus the determinant of the tensor is invariant, it’s a scalar.

Symmetry of a tensor: if the matrix Tij representing the tensor T is symmetric then

Tij = Tji

Under a change of basis

T ′ij = `ip `jq Tpq

= `ip `jq Tqp (using symmetry)

= `iq `jp Tpq (relabelling p↔ q)

= T ′ji
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Therefore a symmetric tensor remains symmetric under a change of basis. (The inertia
tensor is an example of a symmetric tensor.) Similarly an antisymmetric tensor Tij = −Tji
remains antisymmetric (exercise).

In fact one can decompose an arbitrary second rank tensor Tij into a symmetric part Sij and
an antisymmetric part Aij through

Tij = 1
2

[Tij + Tji] + 1
2

[Tij − Tji] = Sij + Aij

where Sij = 1
2
(Tij + Tji) is symmetric, and Aij = 1

2
(Tij − Tji) is antisymmetric.

Relabelling the components of A by a12 = −a21 = f3, a23 = −a32 = f1, a31 = −a13 = f2

gives

Aij =

 0 f3 −f2

−f3 0 f1

f2 −f1 0


ij

= εijkfk ,

This relation can be inverted

εijkAjk = εijk εjklfl = − (δij δjl − δil δjj)fl = 2fi .

i.e. the components Aij of an antisymmetric tensor can always be written in terms of the
components fi of a pseudovector, and vice versa.

9 The Inertia Tensor

9.1 Kinetic energy and the Inertia Tensor

We saw previously that for a single particle of mass m, located at position r with respect to
an origin O on the axis of rotation of a rigid body

Li = Iij(O)ωj where Iij(O) = m {r2 δij − xi xj}

where Iij(O) are the components of the inertia tensor, relative to O, in the basis {e i}.

For a collection of N particles of mass m(α) at r(α), where α = 1 . . . N ,

Iij(O) =
∑N

α=1 m
(α)
{(
r(α) · r(α)

)
δij − x(α)

i x
(α)
j

}
(29)

For a continuous body, the sums become integrals, giving

Iij(O) =

∫
V

ρ(r)
{(
r · r

)
δij − xi xj

}
dV
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where ρ(r) is the density (mass per unit volume) at position r, and therefore ρ(r) dV is the
mass of the volume element dV at r.

For laminae (flat objects) and solid bodies, these are 2- and 3-dimensional integrals respec-
tively.

If the basis is fixed relative to the body, the Iij(O) are constants in time.

The inertia tensor is also useful in computing the kinetic energy K

K =
N∑
α=1

1

2
m(α) v(α)2

=
1

2

∑
m(α)

(
ω × r(α)

)2

=
1

2

∑
m(α)εijk ωj x

(α)
k εilm ωl x

(α)
m

=
1

2

∑
m(α) (δjl δkm − δjm δkl) x(α)

k x(α)
m ωj ωl

=
1

2

∑
m(α)

(
r(α)2 ω2 − x(α)

k x
(α)
j ωj ωk

)
=

1

2

∑
m(α)

(
r(α)2 δij − x(α)

i x
(α)
j

)
ωi ωj

Thus we have

K =
1

2
Iij(O)ωi ωj ≡

1

2
ωT I(O)ω ≡ 1

2
ω · L

where I(O) is a 3× 3 matrix, and ωT and ω are row and column matrices respectively.

It’s sometimes sufficient to combine the diagonal and off-diagonal terms by writing ω = ω n
and then computing the component of L along the axis of rotation

h ≡ L · n = Iij(O)ωj ni =
∑
α

m(α)
{
r(α)2 δij − x(α)

i x
(α)
j

}
ni nj ω

=
∑
α

m(α)
{
r(α)2 − (r(α) · n)2

}
ω

or
h = Ĩω with Ĩ =

∑
α

m(α) r
(α)2
⊥

where r
(α)
⊥ is the perpendicular distance of the αth particle from the axis of rotation and Ĩ

is the moment of inertia about n. Similarly we have

K =
1

2
Ĩω2

Note that the inertia tensor Iij(O) is a ‘geometric’ factor and once calculated can be used
for any axis of rotation; the quantity Ĩ depends on the axis n and must be re-calculated if
a different axis of rotation is chosen.
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9.2 Computing the Inertia Tensor

Consider the diagonal term

I33(O) =
∑
α

m(α)
{

(r(α) · r(α))− (x
(α)
3 )2

}
=

∑
α

m(α)
{

(x
(α)
1 )2 + (x

(α)
2 )2

}
=

∑
α

m(α) (r
(α)
⊥ )2 ,

where r
(α)
⊥ is the perpendicular distance of m(α) from the e

3
axis through O.

So I33(O) is the usual moment of inertia about the n = e
3

axis. It is simply the mass of
each particle in the body, multiplied by the square of its distance from the e 3 axis, summed
over all of the particles. Similarly, the other diagonal terms I11 and I22 are the moments of
inertia about the e

1
and e

2
axes respectively.

The off-diagonal terms are called the products of inertia, and have the form, for example

I12(O) = −
∑
α

m(α) x
(α)
1 x

(α)
2 .

Example: Consider 4 masses m at the vertices of a square of side 2a, with the origin O at
the centre of the square.

-

6

e 1
a

e 2

a

O

s

s

s

s

(a, a, 0)

(a,−a, 0)

(−a, a, 0)

(−a,−a, 0)

For m(1) = m at (a, a, 0), r(1) = ae 1 + ae 2, so r(1) · r(1) = 2a2, x
(1)
1 = a, x

(1)
2 = a and x

(1)
3 = 0

I(O) = m

2a2

1 0 0
0 1 0
0 0 1

− a2

 1 1 0
1 1 0
0 0 0

 = ma2

 1 −1 0
−1 1 0

0 0 2

 .

For m(2) = m at (a,−a, 0), r(2) = ae 1 − ae 2, so r(2) · r(2) = 2a2, x
(2)
1 = a and x

(2)
2 = −a

I(O) = m

2a2

1 0 0
0 1 0
0 0 1

− a2

 1 −1 0
−1 1 0

0 0 0

 = ma2

 1 1 0
1 1 0
0 0 2

 .

For m(3) = m at (−a,−a, 0), r(3) = −ae 1− ae 2, so r(3) · r(3) = 2a2, x
(3)
1 = −a and x

(3)
2 = −a

I(O) = m

2a2

1 0 0
0 1 0
0 0 1

− a2

 1 1 0
1 1 0
0 0 0

 = ma2

 1 −1 0
−1 1 0

0 0 2

 .
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For m(4) = m at (−a, a, 0), r(4) = −ae 1 + ae 2, so r(4) · r(4) = 2a2, x
(4)
1 = −a and x

(4)
2 = a

I(O) = m

2a2

1 0 0
0 1 0
0 0 1

− a2

 1 −1 0
−1 1 0

0 0 0

 = ma2

 1 1 0
1 1 0
0 0 2

 .

Adding all four contributions gives the inertia tensor for the system of 4 particles,

I(O) = 4ma2

1 0 0
0 1 0
0 0 2


Note that the resulting inertia tensor is diagonal in this basis (even though the individual
inertia tensors for each mass are not diagonal); the products of inertia are all zero. This
implies that the basis vectors are eigenvectors of the inertia tensor (see later for details.) For
example, if ω = ω(0, 0, 1), then L(O) = 8mωa2(0, 0, 1) ∝ ω.

In general, L(O) is not parallel to ω. For example, if ω = ω(0, 1, 1) then L(O) = 4mωa2(0, 1, 2),
which is not parallel to ω.

There are of course other bases in which the inertia tensor is not diagonal.

9.3 Two Useful Theorems

Perpendicular Axes Theorem

For a lamina (two dimensional sheet), or a collection of particles confined to a plane (choosing
e 3 to be normal to the plane), with O in the plane

I11(O) + I22(O) = I33(O)

This is simply checked by using equation (29) and noting that x
(α)
3 = 0.

Parallel Axes Theorem

The position vector R of the centre of mass G of the body is defined to be

R =
1

M

∑
α

m(α) r(α),

where r(α) are the position vectors relative to the origin O, and M =
∑

αm
(α), is the total

mass of the system.

The parallel axes theorem states that

Iij(O)− Iij(G) = M
{

(R ·R) δij −RiRj

}
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Proof: Let s(α) be the position of m(α) with respect to G, then

Iij(G) =
∑
α

m(α)
{

(s(α)· s(α)) δij − s(α)
i s

(α)
j

}
O -

GR
��

��
�
��

�
��

*

r(α)

m(α)u
�
�
�
�
�

�
s(α)

and

Iij(O) =
∑
α

m(α)
{

(r(α) · r(α)) δij − x(α)
i x

(α)
j

}
=

∑
α

m(α)
{

(R + s(α))2 δij − (R + s(α))i (R + s(α))j
}

= M
{
R2δij −RiRj

}
+
∑
α

m(α)
{

(s(α) · s(α)) δij − s(α)
i s

(α)
j

}
+ 2 δij R ·

∑
(α)

m(α)s(α) −Ri

∑
α

m(α)s
(α)
j −Rj

∑
α

m(α)s
(α)
i

= M
{
R2δij −RiRj

}
+ Iij(G)

The cross terms vanish because∑
α

m(α)s
(α)
i =

∑
α

m(α)
(
x

(α)
i −Ri

)
= 0 .

Example of the use of the Parallel Axes Theorem

Consider the same arrangement of masses as before but
with O at one corner of the square, i.e. a (massless)
lamina of side 2a, with masses m at each corner and
the origin O at the bottom left, so that the masses are
at (0, 0, 0), (2a, 0, 0), (0, 2a, 0) and (2a, 2a, 0)

-

6

e 1
2a

e 2

2a

O
t t

t t
r

G

We have M = 4m and

−→
OG = R =

1

4m
{m(0, 0, 0) +m(2a, 0, 0) +m(0, 2a, 0) +m(2a, 2a, 0)}

= (a, a, 0)

So G is at the centre of the square and R2 = 2a2. We can now use the parallel axis theorem
to relate the inertia tensor of the previous example to that of the present one

I(O)− I(G) = 4m

2a2

1 0 0
0 1 0
0 0 1

− a2

1 1 0
1 1 0
0 0 0

 = 4ma2

 1 −1 0
−1 1 0

0 0 2

 .

From the previous example,

I(G) = 4ma2

1 0 0
0 1 0
0 0 2

 and hence

I(O) = 4ma2

1 + 1 0− 1 0
0− 1 1 + 1 0

0 0 2 + 2

 = 4ma2

 2 −1 0
−1 2 0

0 0 4
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10 Eigenvectors of Real, Symmetric Tensors

Let T be a 2nd-rank tensor with components Tij, then an eigenvector n of T obeys (in any
basis)

Tijnj = λni

where λ is the eigenvalue of the eigenvector.

The tensor acts on the eigenvector to produce a vector in the same direction.

The direction of n doesn’t depend on the basis although its components do (because n is a
vector), and is referred to as a principal axis ; λ is a scalar (it doesn’t depend on the basis)
and is referred to as a principal value.

10.1 Construction of the Eigenvectors

Much of this section should be revision – so we’ll try to go through it quickly.

Since ni = δijnj , we can write the equation for an eigenvector as

(Tij − λ δij)nj = 0

This set of three linear equations has a non-trivial solution (i.e. a solution with n 6= 0) iff

det (T − λ I) ≡ 0 .

i.e. ∣∣∣∣∣∣
T11 − λ T12 T13

T21 T22 − λ T23

T31 T32 T33 − λ

∣∣∣∣∣∣ = 0 .

This is known as the ‘characteristic’ or ‘secular’ equation and is cubic in λ, giving 3 real (to
be proven) solutions λ(1), λ(2) and λ(3), with corresponding eigenvectors n(1), n(2) and n(3).

Example:

T =

 1 1 0
1 0 1
0 1 1

 .

The characteristic equation is∣∣∣∣∣∣
1− λ 1 0

1 −λ 1
0 1 1− λ

∣∣∣∣∣∣ = 0.

Thus
(1− λ){λ(λ− 1)− 1} − {(1− λ)− 0} = 0

and so
(1− λ){λ2 − λ− 2} = (1− λ)(λ− 2)(λ+ 1) = 0.

Thus the solutions are λ = 1, λ = 2 and λ = −1.

43



Check: The sum of the eigenvalues is 2, and is equal to the trace of the tensor; the product
of the eigenvalues is −2, and is equal to the determinant. The reason for this will shortly
become apparent.

We now find the eigenvector for each of these eigenvalues, by solving Tij nj = λni

(1− λ)n1 + n2 = 0
n1 − λn2 + n3 = 0

n2 + (1− λ)n3 = 0.

for λ = 1, λ = 2 and λ = −1 in turn.

For λ = λ(1) = 1, we denote the corresponding eigenvector by n(1) and the equations for the
components of n(1) are (dropping the label (1) for brevity):

n2 = 0
n1 − n2 + n3 = 0

n2 = 0

 ⇒ n2 = 0 , n3 = −n1

Thus n1 : n2 : n3 = 1 : 0 : −1, and a unit vector in the direction of n(1) is

n(1) =
1√
2

(1, 0,−1) .

Note that we could equally well have chosen n(1) = −1√
2

(1, 0,−1) .

For λ = λ(2) = 2, the equations for the components of n(2) are:

−n1 + n2 = 0
n1 − 2n2 + n3 = 0

n2 − n3 = 0

 ⇒ n2 = n3 = n1 .

Thus n1 : n2 : n3 = 1 : 1 : 1 and a unit vector in the direction of n(2) is

n(2) =
1√
3

(1, 1, 1) .

For λ = λ(3) = −1, a similar calculation (exercise) gives

n(3) =
1√
6

(1,−2, 1) .

Note that n(1) · n(2) = n(1) · n(3) = n(2) · n(3) = 0 and so the eigenvectors are mutually
orthogonal.

The scalar triple product of the triad n(1), n(2) and n(3), with the above choice of signs, is
+1, (i.e. n(3) = n(1)× n(2)) and so they form a right-handed basis. Changing the sign of any
one (or all three) of the vectors would produce a left-handed basis.
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10.2 Eigenvalues and Eigenvectors of a real symmetric tensor

Important Theorem: If Tij is real and symmetric, its eigenvalues are real. The eigenvec-
tors corresponding to distinct eigenvalues are orthogonal.

Proof: Let n be an eigenvector, with eigenvalue λ, then by definition

Tij nj = λni (30)

This has a non-zero solution if det(T −λI) = 0. Now multiply equation (30) by n∗i , and sum
over i, giving

n∗i Tij nj = λ n∗ · n (31)

Next, take the complex conjugate of equation (30), multiply by ni and sum over i, to give

ni T
∗
ij n
∗
j = λ∗ n∗ · n (32)

But Tij is real and symmetric, so T ∗ij = Tji , and therefore

LHS of equation (32) = n∗j Tji ni = LHS of equation (31)

So subtracting (32) from (31) gives

(λ− λ∗) (n∗ · n) = 0

and hence as n∗ · n > 0 then

λ = λ∗

Therefore the eigenvalues of a real symmetric matrix are real.

Since λ is real and Tij are real, and the eigenvalue equation (30) is real and linear (in ni),
then real eigenvectors can be found, and they can be normalised to unity.

Now consider two distinct eigenvalues, λ(α) 6= λ(β), with corresponding eigenvectors n(α),
n(β). Then

n
(β)
i Tij n

(α)
j = λ(α) n(β) · n(α)

n
(α)
i Tij n

(β)
j = λ(β) n(α) · n(β)

Again due to the symmetry of Tij the LHS of these equations are equal so we have

(λ(α) − λ(β)) n(α) · n(β) = 0

But λ(α) 6= λ(β), so this implies

n(α) · n(β) = 0

Therefore eigenvectors are orthogonal if their eigenvalues are distinct.
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10.3 Degenerate eigenvalues

If the characteristic equation is of the form

(λ(1) − λ) (λ(2) − λ)2 = 0

there is a repeated root and we have a doubly degenerate eigenvalue λ(2). But

(i) The theorem states that the eigenvector subspace corresponding to a degenerate eigen-
value is orthogonal to the eigenvector(s) corresponding to the other eigenvalue(s)
λ(i) 6= λ(2). 1

(ii) Within this subspace, the eigenvectors can always be chosen to be orthogonal.

So we can always find a complete set of mutually orthogonal eigenvectors, and then normalise
them to unity.

Example:

T =

 0 1 1
1 0 1
1 1 0

 ⇒ |T − λI| =

∣∣∣∣∣∣
−λ 1 1

1 −λ 1
1 1 −λ

∣∣∣∣∣∣ = 0 ⇒ λ = 2 , λ = −1 (twice) .

For λ = λ(1) = 2 with eigenvector n(1)

−2n1 + n2 + n3 = 0
n1 − 2n2 + n3 = 0
n1 + n2 − 2n3 = 0

 ⇒

{
n1 = n2 = n3

n(1) = 1√
3
(1, 1, 1) .

For λ = λ(2) = −1 with eigenvector n(2)

n
(2)
1 + n

(2)
2 + n

(2)
3 = 0 (33)

is the only independent equation. This can be written as n(1) · n(2) = 0 which is the equa-
tion for a plane normal to n(1). Thus any vector orthogonal to n(1) is an eigenvector with
eigenvalue −1.

If we choose n
(2)
3 = 0, then n

(2)
2 = −n(2)

1 , and a possible normalised eigenvector is

n(2) =
1√
2

(1,−1, 0) .

If we demand that the third eigenvector n(3) is orthogonal to n(2), then we must have

n
(3)
2 = n

(3)
1 . Equation (33) then gives n

(3)
3 = −2n

(3)
1 and so

n(3) =
1√
6

(1, 1,−2) .

1For a 3 × 3 symmetric matrix with a doubly generate eigenvalue, there is of course only one distinct
eigenvalue. But the proof of the theorem is valid for N ×N matrices for any N .
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Alternatively, the third eigenvector can be calculated using

n(3) = ± n(1) × n(2)

The sign chosen determines the handedness of the triad n(1), n(2), n(3). This particular pair,
n(2) and n(3), is just one of an infinite number of orthogonal pairs that are eigenvectors of
Tij, all lying in the plane normal to n(1).

Finally, if the characteristic equation is of the form

(λ(1) − λ)3 = 0

then we have a triply degenerate eigenvalue λ(1). This can only occur if the tensor is equal
to λ(1) δij which means it is ‘isotropic’ and any vector is an eigenvector with eigenvalue λ(1).

11 Diagonalisation of a Real, Symmetric Tensor

In an arbitrary basis {e i}, the tensor Tij is in general not diagonal, i.e. Tij 6= 0 for some or
all i 6= j.

However if we transform to a basis constructed from the normalised eigenvectors – the
‘principal axes’ basis – the tensor becomes diagonal.

Let us transform to the basis {e i′} chosen such that

e i
′ = n(i)

where n(i) are the three orthogonal and normalised eigenvectors of Tij with eigenvalues λ(i)

respectively.

The transformation matrix L is then given by

`ij = e i
′ · e j = n(i) · e j = n

(i)
j .

so the rows of L are the components of the normalised eigenvectors of T .

First check that this L is indeed orthogonal:

LLT =

 n
(1)
1 n

(1)
2 n

(1)
3

n
(2)
1 n

(2)
2 n

(2)
3

n
(3)
1 n

(3)
2 n

(3)
3


 n

(1)
1 n

(2)
1 n

(3)
1

n
(1)
2 n

(2)
2 n

(3)
2

n
(1)
3 n

(2)
3 n

(3)
3



=


n(1) · n(1) n(1) · n(2) n(1) · n(3)

n(2) · n(1) n(2) · n(2) n(2) · n(3)

n(3) · n(1) n(3) · n(2) n(3) · n(3)

 =


1 0 0

0 1 0

0 0 1

 = I

Alternatively (and much more quickly!)

(LLT )ij = lik ljk = n
(i)
k n

(j)
k = n(i) · n(j) = δij
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As a by-product, we have just shown that the rows of an orthonormal matrix are indeed
orthonormal. Similarly for the columns.

In the basis {e i′}
T ′ij = (LTLT )ij

Now since the columns of LT are the normalised eigenvectors of T , we have

TLT =

 T11 T12 T13

T21 T22 T23

T31 T32 T33


 n

(1)
1 n

(2)
1 n

(3)
1

n
(1)
2 n

(2)
2 n

(3)
2

n
(1)
3 n

(2)
3 n

(3)
3

 =

 λ(1)n
(1)
1 λ(2)n

(2)
1 λ(3)n

(3)
1

λ(1)n
(1)
2 λ(2)n

(2)
2 λ(3)n

(3)
2

λ(1)n
(1)
3 λ(2)n

(2)
3 λ(3)n

(3)
3



LTLT =

 n
(1)
1 n

(1)
2 n

(1)
3

n
(2)
1 n

(2)
2 n

(2)
3

n
(3)
1 n

(3)
2 n

(3)
3


 λ(1)n

(1)
1 λ(2)n

(2)
1 λ(3)n

(3)
1

λ(1)n
(1)
2 λ(2)n

(2)
2 λ(3)n

(3)
2

λ(1)n
(1)
3 λ(2)n

(2)
3 λ(3)n

(3)
3

 =

 λ(1) 0 0

0 λ(2) 0

0 0 λ(3)


where the last results follow from the orthonormality of the n(i) (rows of L, columns of LT ).

Alternatively (and for once dispensing with the summation convention)

T ′ij = (LTLT )ij =
∑
pq

`ip `jq Tpq =
∑
pq

n(i)
p Tpq n

(j)
q =

∑
p

n(i)
p λ(j) n(j)

p = λ(j) n(i) · n(j)

= λ(i) δij

Thus, with respect to a basis defined by the eigenvectors or principal axes of the tensor, the
tensor is diagonal, and is sometimes written T ′ = diag {λ(1), λ(2), λ(3)}. The diagonal basis
is referred to as the principal axes basis.

Note: In the diagonal basis the trace of a tensor is the sum of the eigenvalues; the deter-
minant of the tensor is the product of the eigenvalues. Since the trace and determinant are
invariants this means that in any basis the trace and determinant are the sum and product
of the eigenvalues respectively.

The Inertia Tensor: Consider the four masses arranged in a square with the origin at
the left hand corner, as in our previous example. The inertia tensor is

I(O) = 4ma2

 2 −1 0
−1 2 0

0 0 4


It’s easy to check (exercise) that the normalised eigenvectors (principal axes of inertia) are

1√
2
(e 1 +e 2) (eigenvalue 4ma2), 1√

2
(−e 1 +e 2) (eigenvalue 12ma2) and e 3 (eigenvalue 16ma2).

-

6

�
�
�
�
���

@
@

@
@
@@I e 1

′e 2
′

e 1
2a

e 2

2a

O
t t

t t

Defining the e i
′ basis: e 1

′ = 1√
2
(e 1 + e 2), e 2

′ = 1√
2
(−e 1 + e 2), e 3

′ = e 3, so e 1
′ × e 2

′ = e 3
′ to
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give a RH basis, one obtains

L =

 1√
2

1√
2

0
−1√

2
1√
2

0

0 0 1

 (which from section (6.4) is a rotation of π/4 about e 3 axis)

and the inertia tensor in the {e i′} basis has components I ′ij(O) =
(
L I(O)LT

)
ij

so that

I ′(O) = 4ma2

 1√
2

1√
2

0
−1√

2
1√
2

0

0 0 1

 2 −1 0
−1 2 0

0 0 4

 1√
2
−1√

2
0

1√
2

1√
2

0

0 0 1


= 4ma2

1 0 0
0 3 0
0 0 4


We see that the tensor is indeed diagonal with diagonal elements which are the eigenvalues
(principal moments of inertia).

Remark: Diagonalisability is a very special and useful property of real, symmetric tensors.
It is a property shared by the more general class of Hermitian operators which you will meet
in quantum mechanics. A general tensor does not share this property. For example, a real
non-symmetric tensor cannot in general be diagonalised by an orthogonal transformation.
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12 Fields

Many physical quantities vary in some region of space, e.g. the temperature T (r) of a body.
To study this we require the concept of a field.

If to each point r in some region of space there corresponds a scalar φ(x1, x2, x3), then φ(r)
is a scalar field.

Examples: temperature distribution in a body T (r), pressure in the atmosphere p(r), electric
charge density or mass density ρ(r), electrostatic potential φ(r).

Similarly a vector field assigns a vector v(r) to each point r of some region.

Examples: velocity in a fluid v(r), electric current density j(r), electric field E(r), magnetic
field B(r) (actually a pseudovector field).

A vector field in 2-d can be represented graphically, at a carefully selected set of points r, by
an arrow whose length and direction is proportional to v(r) e.g. wind velocity on a weather
forecast chart.

12.1 Level Surfaces or Equipotentials of a Scalar Field

If φ(r) is a non-constant scalar field, then the equation φ(r) = c where c is a constant, defines
a level surface or equipotential of the field. Different level surfaces do not intersect, or φ
would be multi-valued at the point of intersection.

Familiar examples in two dimensions are contours of constant height on a geographical map,
h(x1, x2) = c, which are of course level curves rather than level surfaces. Isobars on a weather
map are level curves of pressure p(x1, x2) = c.

Examples in three dimensions:

(i) Let φ(r) = r2 ≡ x2
1 + x2

2 + x2
3 = x2 + y2 + z2

The level surface φ(r) = r2
0 is a sphere of radius r0 centred on the origin.

As r0 is varied, we obtain a family of level surfaces or equipotentials which are concen-
tric spheres.

(ii) The electrostatic potential at r due to a point charge q situated at the point a is

φ(r) =
q

4πε0

1

|r − a|

The equipotentials or level surfaces are concentric spheres centred on the point a.

(iii) Let φ(r) = k · r.
The level surfaces are planes k · r = constant , with k normal to the planes.

(iv) Let φ(r) = exp(ik · r), which is a complex scalar field.

Since k · r = constant is the equation for a plane, the level surfaces are again planes.
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12.2 Gradient of a Scalar Field

How do we describe mathematically the variation of a scalar field as a function of position?

As an example, think of a 2-d contour map of the height h = h(x1, x2) of a hill. h(x1, x2) is a
scalar field. If we are on the hill and move in the x1−x2 plane then the change in height will
depend on the direction in which we move (unless the hill is completely flat!) For example
there will be a direction in which the height increases most steeply: ‘straight up the hill.’
We now introduce a formalism to describe how a scalar field φ(r) changes as a function of r.

Mathematical Note: A scalar field φ(r) = φ(x1, x2, x3) is said to be continuously differ-
entiable in a region R if its first order partial derivatives

∂φ(r)

∂x1

,
∂φ(r)

∂x2

and
∂φ(r)

∂x3

exist, and are continuous at every point r ∈ R. We will generally assume scalar fields are
continuously differentiable.

Let φ(r) be a scalar field, and consider 2 nearby points: P with position vector r, and Q
with position vector r + δr. Assume P and Q lie on different level surfaces as shown:

O

P

Q

_ φ =

φ =

constant1

constant2 

δr_

r

Now use the definition of the derivative (or lowest-order Taylor’s theorem) for a function of
3 variables to evaluate the change in φ as we move from P to Q

δφ ≡ φ(r + δr)− φ(r)

= φ(x1 + δx1, x2 + δx2, x3 + δx3)− φ(x1, x2, x3)

= φ(x1, x2 + δx2, x3 + δx3) +
∂φ(r)

∂x1

δx1 − φ(x1, x2, x3) + . . .

=
∂φ(r)

∂x1

δx1 +
∂φ(r)

∂x2

δx2 +
∂φ(r)

∂x3

δx3 +O(δxi δxj)

where we assumed that the higher order partial derivatives exist. Neglecting these higher
order terms, we write

δφ = ∇φ · δr

where the 3 quantities (
∇φ
)
i
≡ ∂φ

∂xi
≡ ∂iφ
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form the Cartesian components of a vector field

∇φ(r) ≡ ∂φ

∂x1

e 1 +
∂φ

∂x2

e 2 +
∂φ

∂x3

e 3 =
∂φ

∂xi
e i

where we used the summation convention in the last line, there is an implicit sum over the
dummy index i. (See later for a derivation of the transformation properties of ∇φ.)

Note that the partial derivative ∂φ/∂x1 is the derivative of φ(r) with respect to x1, keeping
x2 and x3 fixed, etc.

In ‘xyz’ notation

∇φ =
∂φ

∂x
e
x

+
∂φ

∂y
e
y

+
∂φ

∂z
e
z

The vector field ∇φ(r) is called the gradient of φ(r), and is pronounced ‘grad phi’.

Example: Calculate the gradient of φ(r) = r2 = x2
1 + x2

2 + x2
3 .

(∇ r2)1 =
∂

∂x1

(x2
1 + x2

2 + x2
3) = 2x1

Similarly for x2, x3, and hence
∇ r2 = 2r

12.3 Interpretation of the gradient

In deriving the expression for δφ above, we assumed that the points P and Q lie on different
level surfaces. Now consider the situation where P and Q are nearby points on the same
level surface. In that case, δφ = 0 and so

δφ = ∇φ · δr = 0

P

Q
δ

∆

.

r_

_ φ

The infinitesimal vector δr lies in the level surface at r, and the above equation holds for all
such δr, hence

∇φ(r) is normal to the level surface at r.

To construct a unit normal n(r) to the level surface at r, we divide ∇φ by its length

n(r) =
∇φ
|∇φ|

(
for |∇φ| 6= 0

)
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12.4 Directional Derivative

Consider the change, δφ, produced in φ(r) by moving a distance δs in the direction of the
unit vector ŝ, so that δr = δs ŝ. Then

δφ = ∇φ · δr = (∇φ) · ŝ δs

As δs→ 0, the rate of change of φ as we move in the direction of ŝ is

dφ

ds
= ŝ · ∇φ = |∇φ| cos θ (34)

where θ is the angle between ŝ and the normal to the level surface at r.

ŝ · ∇φ is called the directional derivative of the scalar field φ in the direction of ŝ

The directional derivative has its maximum value when ŝ is parallel to ∇φ, and is zero when
δs ŝ lies in the level surface. Therefore

∇φ points in the direction of the maximum rate of increase in φ

Recall that this direction is normal to the level surface. A familiar example is that of contour
lines on a map: the steepest direction is perpendicular to the contour lines.

Example: Find the directional derivative of φ(r) = xy(x+ z) at the point (1, 2,−1) in the

direction of (e
x

+ e
y
)/
√

2.

∇φ = (2xy + yz) e
x

+ x(x+ z) e
y

+ xy e
z

= 2e
x

+ 2e
z

at (1, 2,−1)

Thus at this point
1√
2

(e
x

+ e
y
) · ∇φ =

√
2

Physical example: Let T (r) be the temperature of the atmosphere at the point r. An
object flies through the atmosphere with velocity v . Obtain an expression for the rate of
change of temperature experienced by the object.

As the object moves from r to r + δr in time δt, it sees a change in temperature

δT = ∇T · δr =

(
∇T ·

δr

δt

)
δt

Taking the limit δt→ 0, we obtain

dT (r)

dt
= v · ∇T (r)
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13 More on gradient, the operator del

13.1 Examples of the Gradient in Physical Laws

Gravitational force due to the Earth: The potential energy of a particle of mass m at
a height z above the Earth’s surface is φ = mgz. The force due to gravity can be written as

F = −∇φ = −mg e
z

Newton’s Law of Gravitation: Now consider the gravitational force on a mass m at r
due to a mass m0 at the origin. We can write this as

F = − Gmm0

r2
r̂ = −∇φ

where the potential energy φ = −Gmm0/r and r̂ is a unit vector in the direction of r. We
shall show below that ∇ (1/r) = −r/r3.

In these two examples we see that the force acts down the potential energy gradient.

13.2 Examples on gradient

The previous example on directional derivatives used the ‘xyz’ notation. This gets unwieldy
for more complicated examples, and suffix notation is more convenient.

(i) Let φ(r) = r2 = x2
1 + x2

2 + x2
3, then

(∇ r2)i =
∂

∂xi
(x2

1 + x2
2 + x2

3) = 2xi or ∇ r2 = 2r

Or, using the shorthand ∂/∂xi ≡ ∂i and the summation convention to write r2 = xjxj

(∇r2)i = ∂i r
2 = ∂i (xjxj) = δijxj + xjδij = 2xi

where we used the important property of partial derivatives

∂xj
∂xi

= δij = ∂ixj

The level surfaces of r2 are spheres centred on the origin, and the gradient of r2 at r
points radially outward with magnitude 2r.

(ii) Let φ = a · r where a is a constant vector.

(∇ (a · r))i = ∂i(ajxj) = ajδij = ai

This is not surprising, since the equipotentials a · r = c are planes orthogonal to a.
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(iii) Let φ(r) = r =
√
x2

1 + x2
2 + x2

3 = (xjxj)
1/2

(∇ r)i = ∂i (xjxj)
1/2

=
1

2
(xjxj)

−1/2 ∂i(xkxk) (chain rule)

=
1

2r
2xi

= (r̂)i so ∇ r =
1

r
r = r̂

The gradient of the length of the position vector is the unit vector pointing radially
outwards from the origin. It is normal to the level surfaces which are spheres centered
on the origin.

13.3 Identities for gradients

If φ(r) and ψ(r) are real scalar fields, then:

(i) Distributive law

∇ (φ+ ψ) = ∇φ+∇ψ

Proof: (
∇ (φ + ψ)

)
i
≡ ∂i(φ+ ψ) = ∂iφ+ ∂iψ ≡

(
∇φ
)
i
+
(
∇ψ

)
i

(ii) Product rule

∇ (φψ) =
(
∇φ
)
ψ + φ

(
∇ψ

)
Proof:(

∇ (φψ)
)
i
≡ ∂i (φψ) = (∂iφ)ψ + φ(∂iψ) ≡

(
∇φ
)
i
ψ + φ

(
∇ψ

)
i

(iii) Chain rule: If F (φ(r)) is a scalar field, then

∇F (φ) =
dF (φ)

dφ
∇φ

Proof: (
∇F (φ)

)
i

=
∂

∂xi
(F (φ)) =

dF (φ)

dφ

∂φ

∂xi
=
dF (φ)

dφ

(
∇φ
)
i
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Example of Chain Rule: If φ(r) = r we can use result (iii) from section (13.2) to give

∇F (r) =
dF (r)

dr
∇ r =

F ′(r)

r
r

If F
(
φ(r)

)
= rn, we have φ(r) = r as in the previous example, and so

∇ (rn) =
d rn

dr

(
∇ r
)

=
(
n rn−1

) 1

r
r =

(
n rn−2

)
r

In particular

∇
(

1

r

)
= −

r

r3

We can also do this directly in suffix notation(
∇
(

1

r

))
i

= ∂i (xjxj)
− 1

2 = − 1

2
(xkxk)

−3/2 2 δij xj = − xi
r3

13.4 Transformation of the gradient

We now prove that the gradient of a scalar field is indeed a vector field - thus far we merely
assumed it was!

Let the point P have coordinates xi in the {e i} basis, and the same point P have coordinates
x′i in the {e i′} basis, i.e. we consider the vector transformation law xi → x′i = `ij xj.

φ(r) is a scalar field if it depends only on the physical point P and not on the coordinates
xi or x′i used to specify P . The value of φ at P is invariant under a change of basis, but the
function may look different, i.e.

φ′(x′1, x
′
2, x

′
3) = φ(x1, x2, x3)

Similarly a is a vector field if its components transform as

a′i(x
′
1, x

′
2, x

′
3) = `ip ap(x1, x2, x3)

Now consider ∇φ in the new (primed) basis. Its components transform as

∂′i φ
′(r′) ≡ ∂

∂x′i
φ′(x′1, x

′
2, x

′
3) =

∂xj
∂x′i

∂

∂xj
φ(x1, x2, x3)

(using the chain rule). Now since xj = `kj x
′
k (inverse transformation for vector components)

∂xj
∂x′i

= `kj
∂x′k
∂x′i

= `kj δik = `ij .

Hence

∂′i φ
′(r′) = `ij

∂

∂xj
φ(x1, x2, x3) ≡ `ij ∂jφ(r)

which shows that the components of ∇φ transform in the same way as the components of a
vector. Thus ∇φ(r) transforms as a vector field as claimed.
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13.5 The operator del

We can think of ∇ as a vector operator, called del, which acts on the scalar field φ(r) to
produce the vector field ∇φ(r).

In Cartesians: ∇ ≡ e 1

∂

∂x1

+ e 2

∂

∂x2

+ e 3

∂

∂x3

≡ e i ∂i

We call ∇ an ‘operator’ since it operates on something to its right. It is a vector operator
because it has vector transformation properties,

∂′i = `ip ∂p

We have seen how ∇ acts on a scalar field to produce a vector field. We can make products
of the vector operator ∇ with other vector quantities to produce new operators and fields
in the same way we could make scalar and vector products of two vectors.

For example, the directional derivative of φ in the direction ŝ, was given by ŝ · ∇φ. More
generally, we can interpret a · ∇ as a scalar operator

a · ∇ = ai ∂i

i.e. a · ∇ acts on a scalar field to its right to produce another scalar field

(a · ∇ ) φ = ai ∂iφ = a1
∂φ

∂x1

+ a2
∂φ

∂x2

+ a3
∂φ

∂x3

We can also act with this operator on a vector field b(r) to get another vector field,

(a · ∇ ) b = e 1 (a · ∇ ) b1 + e 2 (a · ∇ ) b2 + e 3 (a · ∇ ) b3

or, equivalently, in components(
(a · ∇ ) b

)
i

= (a · ∇ ) bi = aj ∂j bi

The alternative expression a ·
(
∇ b
)

is undefined because ∇ b doesn’t make sense.

(For this reason, the parentheses are sometimes omitted, and a·∇ b is taken to mean (a·∇ ) b,
but I wouldn’t recommend doing this.)

NB Great care is required with the order in products since, in general, products involving
operators are not commutative. For example

a · ∇ 6= ∇ · a

The quantity a · ∇ is a scalar differential operator whereas ∇ · a ≡ ∂i ai gives a scalar field
called the divergence of a.
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14 Vector Operators, Div, Curl and the Laplacian

We now combine the vector operator ∇ (del) with a vector field to define two new operations
div and curl. Then we define the Laplacian.

14.1 Divergence

We define the divergence of a vector field a(r) (pronounced ‘div a’ ) by

div a(r) ≡ ∇ · a(r)

In Cartesian coordinates

∇ · a ≡ ∂a1

∂x1

+
∂a2

∂x2

+
∂a3

∂x3

=
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

≡ ∂

∂xi
ai ≡ ∂i ai

It’s easy to show that ∇ · a is a scalar field when a is a vector field:

Under a transformation x′i = `ij xj, we have ∂′i = `ij ∂j so

(∇ · a)′ = ∂′i a
′
i = (`ij ∂j) (`ik ak) = δjk ∂j ak = ∂j aj = ∇ · a

Hence ∇ · a is invariant under a change of basis and is thus a scalar field.

Example: If a(r) = r then ∇ · r = 3 which is a useful and important result.

Explicitly: ∇ · r =
∂x1

∂x1

+
∂x2

∂x2

+
∂x3

∂x3

= 1 + 1 + 1 = 3

In suffix notation:

∇ · r =
∂xi
∂xi

= δii = 3

Example: In ‘xyz’ notation, let a = x2z e
x
− 2y3z2 e

y
+ xy2z e

z

∇ · a =
∂

∂x
(x2z)− ∂

∂y
(2y3z2) +

∂

∂z
(xy2z)

= 2xz − 6y2z2 + xy2

Then, at the point (1, 1, 1) for instance, ∇ · a = 2− 6 + 1 = −3.
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14.2 Curl

We define the curl of a vector field a(r) by

curl a(r) ≡ ∇× a(r)

Note that ∇× a is a vector field (more precisely, a pseudo-vector field, if a is a vector field).

In Cartesian coordinates

∇× a = e i
(
∇× a

)
i

= e i εijk
∂

∂xj
ak

Equivalently, the ith component of ∇× a is

(
∇× a

)
i

= εijk ∂j ak

More explicitly (
∇× a

)
1

=
∂a3

∂x2

− ∂a2

∂x3

etc

We can also write the curl in determinant form, as for the ordinary vector product:

∇× a =

∣∣∣∣∣∣∣∣∣
e 1 e 2 e 3

∂

∂x1

∂

∂x2

∂

∂x3

a1 a2 a3

∣∣∣∣∣∣∣∣∣ or

∣∣∣∣∣∣∣∣∣
ex e y e z

∂

∂x

∂

∂y

∂

∂z
ax ay az

∣∣∣∣∣∣∣∣∣

Example: If a(r) = r then ∇× r = 0 another useful and important result

Explicitly: (∇× r)i = εijk ∂jxk = εijk δjk = εijj = 0

or, using the determinant formula, ∇× r =

∣∣∣∣∣∣∣
e 1 e 2 e 3

∂1 ∂2 ∂3

x1 x2 x3

∣∣∣∣∣∣∣ ≡ 0

Example: Compute the curl of a = x2y e 1 + y2x e 2 + xyz e 3

∇× a =

∣∣∣∣∣∣∣∣∣
e
x

e
y

e
z

∂

∂x

∂

∂y

∂

∂z

x2y y2x xyz

∣∣∣∣∣∣∣∣∣ = (xz − 0) e
x
− (yz − 0) e

y
+ (y2 − x2) e

z
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14.3 Physical Interpretation of div and curl

A full interpretation of the divergence and curl of a vector field is best left until after we have
studied the Divergence Theorem and Stokes’ Theorem respectively. However, we can gain
some intuitive understanding by looking at simple examples where div and/or curl vanish.

First consider the radial field a = r. We have just shown that
∇ · r = 3 and ∇× r = 0. We may sketch the vector field a(r) by
drawing vectors of the appropriate direction and magnitude at
selected points. These give the tangents of ‘flow lines’. Roughly
speaking, in this example the divergence is positive because big-
ger arrows come out of any point than go into it. So the field
‘diverges’. (Once the concept of flux of a vector field is under-
stood this will make more sense.)

v

v_

_

Now consider the field v = ω × r where ω is a constant
vector. One can think of v as the velocity of a point in a
rigid rotating body. The sketch shows a cross-section of
the field v with ω chosen to point out of the page. We
can calculate ∇× v as follows:

(
∇×

(
ω × r

))
i

= εijk ∂j
(
ω × r

)
k

= εijk ∂j εklm ωl xm

= (δil δjm − δim δjl) ωl δjm
(

because
∂ωl
∂xj

= 0

)
= (ωi δjj − δij ωj) = 2ωi

Thus we obtain yet another useful and important result:

∇×
(
ω × r

)
= 2ω

We also have ∇ · (ω × r) = 0:

∇ · (ω × r) = ∂i εijk ωj xk = εijk ωj δik = εiji ωj = 0

To understand intuitively the non-zero curl imagine that the flow lines are those of a rotating
fluid with a ball centred on a flow line of the field. The centre of the ball will follow the flow
line. However the effect of the neighbouring flow lines is to make the ball rotate. Therefore
the field has non-zero ‘curl’ and the axis of rotation gives the direction of the curl. In
the previous example (a = r) the ball would just move away from origin without rotating
therefore the field r has zero curl.

Terminology:

(i) If ∇ · a = 0 in some region R, we say a is solenoidal in R.

(ii) If ∇× a = 0 in some region R, we say a irrotational in R.
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14.4 The Laplacian Operator ∇2

Consider taking the divergence of the gradient of a scalar field φ(r)

∇ ·
(
∇ φ

)
=

∂

∂xi

∂

∂xi
φ = ∂2 φ ≡ ∇2φ

∇2 is the Laplacian operator, pronounced ‘del-squared’. In Cartesian coordinates

∇2 =
∂

∂xi

∂

∂xi
≡ ∂i ∂i ≡ ∂2

More explicitly

∇2 φ =
∂2φ

∂x2
1

+
∂2φ

∂x2
2

+
∂2φ

∂x2
3

or
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂x2

The Laplacian of a scalar field ∇2 φ is a scalar field, i.e. the Laplacian is a scalar operator.
Under the transformation x′i = `ij xj we have ∂′i = `ij ∂j so

(∇2)′ = ∂′i ∂
′
i = `ij ∂j `ik ∂k = δjk ∂j ∂k = ∂j ∂j = ∇2

Example: Using indices

∇2 r2 = ∂i ∂i (xjxj) = ∂i (2xi) = 2 δii = 6

Or, directly, using simple results derived previously,

∇2 r2 = ∇ ·
(
∇ r2

)
= ∇ ·

(
2r
)

= 2× 3 = 6 .

In Cartesian coordinates only, the effect of the Laplacian on a vector field a is defined to be

∇2a = ∂i ∂i a =
∂2

∂x2
1

a +
∂2

∂x2
2

a +
∂2

∂x2
3

a

The Laplacian acts on a vector field to produce another vector field.

15 Vector Operator Identities

There are many identities involving div, grad, and curl. It is not necessary to know all of
these, but you should know and be able to use the product and chain rules for gradients
(see Section (13.3), together with the product laws for div and curl given below. These are
almost obvious anyway!

You should be familiar with the rest and to be able to derive and use them when necessary.

It is also extremely useful to know and be able to derive the results for ubiquitous quantities
such as ∇ r, ∇ rn, ∇ · r, ∇× r, (a · ∇ )r, ∇ (a · r), ∇× (a× r) where a is a constant vector.
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This is like learning and understanding multiplication tables, or knowing the derivatives of
elementary functions such as sinx.

Most importantly you should be at ease with div, grad and curl. This only comes through
practice and deriving the various identities gives you just that. In these derivations the
advantages of suffix notation, the summation convention and εijk will (hopefully) become
apparent.

In what follows φ(r), a(r) and b(r) are continuously-differentiable scalar and vector fields.

15.1 Distributive Laws

1. ∇ · (a+ b) = ∇ · a+∇ · b

2. ∇× (a+ b) = ∇× a+∇× b

The proofs of these are straightforward using suffix or ‘xyz’ notation and follow from the
fact that div and curl are linear operations.

15.2 Product Laws

The results of taking the div or curl of products of vector and scalar fields are the most
useful:

3. ∇ · (φ a) =
(
∇φ
)
· a + φ

(
∇ · a

)
4. ∇× (φ a) = (∇φ)× a + φ

(
∇× a

)
Proof of (4): (

∇×
(
φ a
))
i

= εijk ∂j (φ ak)

= εijk ((∂jφ) ak + φ (∂jak))

=
(
∇φ× a

)
i
+ φ

(
∇× a

)
i

One can also obtain this using ‘xyz’ notation: ∇×
(
φ a
)

=

∣∣∣∣∣∣∣∣
ex e y e z
∂

∂x

∂

∂y

∂

∂z
φ ax φ ay φ az

∣∣∣∣∣∣∣∣
The x component is

∂(φaz)

∂y
− ∂(φay)

∂z
=

(
∂φ

∂y

)
az −

(
∂φ

∂z

)
ay + φ

(
∂az
∂y
− ∂ay

∂z

)
=

(
∇φ× a

)
x

+ φ
(
∇× a

)
x

A similar proof holds for the y and z components, but suffix notation is so much quicker. . .

Although we used Cartesian coordinates in our proofs, the identities hold in all coordinate
systems (the concept of a vector is coordinate-independent).
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15.3 Products of Two Vector Fields

The following identities are useful but less obvious:

5. ∇
(
a · b

)
=
(
a · ∇

)
b+

(
b · ∇

)
a+ a×

(
∇× b

)
+ b×

(
∇× a

)
6. ∇ ·

(
a× b

)
= b ·

(
∇× a

)
− a ·

(
∇× b

)
7. ∇×

(
a× b

)
= a

(
∇ · b

)
− b

(
∇ · a

)
+
(
b · ∇

)
a−

(
a · ∇

)
b

Proof of (6):

∇ ·
(
a× b

)
= ∂i (εijk aj bk) = εijk (∂iaj) bk + εijk aj ∂ibk

= bk εkij ∂i aj − aj εjik ∂i bk

= bk
(
∇× a

)
k
− ak

(
∇× b

)
k

Proof of (7):(
∇×

(
a× b

))
i

= εijk ∂j
(
a× b

)
k

= εijk ∂j (εklm albm)

= (δil δjm − δim δjl) ∂j (al bm)

= ∂j (ai bj )− ∂j (aj bi)

= (∂j ai) bj + ai (∂j bj)− (∂j aj) bi − aj (∂j bi)

=
(
b · ∇

)
ai +

(
∇ · b

)
ai −

(
∇ · a

)
bi −

(
a · ∇

)
bi

Other results involving one ∇ can be derived similarly.

Although identities 5, 6 & 7 may be used in explicit calculations, it’s usually just as easy to
apply the standard index notation rules (as we did in deriving them.)

Example: Show that ∇ ·
(
r−3r

)
= 0, for r 6= 0 (where r = |r| as usual).

Method 1: Using identities and simple results: Using identity (3), we have

∇ ·
(
r−3r

)
=
(
∇ r−3

)
· r + r−3

(
∇ · r

)
But we’ve shown previously that ∇ rn = n rn−2 r and ∇ · r = 3. Hence

∇ ·
(
r−3r

)
=

(
−3

r5
r

)
· r +

3

r3

=
−3

r5
r2 +

3

r3
= 0 (except at r = 0)
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Method 2: Direct calculation using index notation:

∇ ·
(
r−3r

)
= ∂i

(
xi/r

3
)

= (∂ixi) /r
3 + xi ∂i r

−3

= δii/r
3 + xi

(
−3xi/r

5
)

= 3/r3 − 3/r3 = 0 (except at r = 0)

15.4 Identities involving two ∇s

8. ∇×
(
∇φ
)

= 0 curl grad φ is always zero.

9. ∇ ·
(
∇× a

)
= 0 div curl a is always zero.

10. ∇×
(
∇× a

)
= ∇

(
∇ · a

)
−∇2a

Proofs are obtained readily in Cartesian coordinates using suffix notation. You should know
the first two, and knowing the second is useful – but you can always derive it from scratch.

Proof of (8):(
∇×

(
∇ φ

))
i

= εijk ∂j
(
∇ φ

)
k

= εijk ∂j ∂k φ

= εijk ∂k ∂j φ

(
since

∂2φ

∂x1 ∂x2

=
∂2φ

∂x2 ∂x1

etc

)
= εikj ∂j ∂k φ (interchanging labels j and k)

= −εijk ∂j ∂k φ (ikj → ijk gives minus sign)

= −
(
∇×

(
∇ φ

))
i

= 0

since any vector equal to minus itself is must be zero. The proof of (9) is similar. It is
important to understand how these two identities stem from the anti-symmetry of εijk.

Identity (10) can be proven using the identity for the product of two epsilon symbols –
tutorial. Again, the proof is far simpler than trying to use ‘xyz’ – try both and see for
yourself. It is an extremely important result and is used frequently in electromagnetism,
fluid mechanics, and other ‘field theories’.

Identity (10) is also used in curvilinear coordinate systems to define the action of the Lapla-
cian on a vector field as

∇2 a ≡ ∇
(
∇ · a

)
−∇×

(
∇× a

)
(See Junior Honours courses.) A mnemonic for the Laplacian acting on a vector field is
GDMCC – Grad-Div Minus Curl-Curl.

Finally, when a scalar field φ depends only on the magnitude of the position vector r = |r|,
we have

∇2 φ(r) = φ′′(r) +
2φ′(r)

r
=

1

r2

(
r2φ′(r)

)′
where the prime denotes differentiation with respect to r. Proof of this relation is left to the
tutorial.

64



16 Scalar and Vector Integration and Line Integrals

16.1 Polar Coordinate Systems

Before starting integral vector calculus we give a brief reminder of polar coordinate systems.
In the figures below, dA indicates an area element and dV a volume element. Note that
different conventions, e.g. for the angles φ and θ, are sometimes used.

Plane polar coordinates: (r, φ)

x = r cos
y = r sin

φ φ
φ

y

x

d
r

rd

dr
φdA = r dr d

φ
φ

Cylindrical coordinates: (ρ, φ, z)

x y

sin

z

dz

dφ
φ

dφ

z = z
ρ

dρ

ρ

y = 
x =  

dV = 

ρ
ρ

ρ ρd dφdz

φcos
φ

Spherical polar coordinates: (r, θ, φ)

x y

2

z

φ
dφ

dr

r

rdθ

r sinθ d

θ
dθ

φ

x = r sin θ cosφ
y = r sinθ sinφ
z = r cosθ

dV = r sinθ dr dθ dφ
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16.2 Scalar & Vector Integration

You should already be familar with integration in IR1, IR2, IR3. Here we review integration
of a scalar field with an example.

Consider a hemisphere of radius a centered on the e 3 axis, with its bottom face at x3 = 0. If
the mass density (a scalar field) is ρ(r) = σ/r where σ is a constant, what is the total mass,
M , of the hemisphere?

It is most convenient to use spherical polar coordinates. Then dV = r2 sin θdr dθ dφ and

M =

∫
hemisphere

ρ(r) dV =

∫ a

0

r2ρ(r)dr

∫ π/2

0

sin θdθ

∫ 2π

0

dφ = 2πσ

∫ a

0

rdr = πσa2

Now consider the centre of mass vector

MR =

∫
V

r ρ(r) dV

This is our first example of integrating a vector field, r ρ(r), in this example. To do this, we
integrate each component in turn using r = r sin θ cosφ e 1 + r sin θ sinφ e 2 + r cos θ e 3

MX =

∫ a

0

r3ρ(r) dr

∫ π/2

0

sin2 θdθ

∫ 2π

0

cosφ dφ = 0 (since the φ integral gives 0)

MY =

∫ a

0

r3ρ(r)dr

∫ π/2

0

sin2 θdθ

∫ 2π

0

sinφ dφ = 0 (since the φ integral gives 0)

MZ =

∫ a

0

r3ρ(r)dr

∫ π/2

0

sin θ cos θ dθ

∫ 2π

0

dφ = 2πσ

∫ a

0

r2dr

∫ π/2

0

sin 2θ

2
dθ

=
2πσa3

3

[
− cos 2θ

4

]π/2
0

=
πσa3

3
⇒ R =

a

3
e 3

16.3 Line Integrals

As an example, consider a particle constrained to move
on a wire. Only the component of the force along the
wire does any work. Therefore the work, dW , by the
force in moving the particle from r to r + dr is

dW = F · dr

The total work done in moving the particle along a wire
which follows some curve C between two points P,Q is

WC =

∫ Q

P

dW =

∫
C

F (r) · dr

This is a line integral along the curve C.

P
r

F(r)_ _

_

O

C

Q

dr

More generally, let a(r) be a vector field defined in the region R, and let C be a curve in R
joining two points P and Q. As usual, r is the position vector at some point on the curve,
and dr is an infinitesimal vector along the curve at r.
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The magnitude of dr is the infinitesimal arc length: ds =
√
dr · dr

We define t to be the unit vector tangent to the curve at r (points in the direction of dr)

t =
dr

ds

Formally, we define the line integral

∫
C

a · dr as a (Riemann) sum by dividing the curve into

intervals: ∫
C

a · dr =

∫
C

a · t ds = lim
δs→ 0
n→∞

n−1∑
i=0

(
a
(
r(i)
)
· t(i)

)
δs(i)

the ith interval having length δs(i), unit tangent vector t(i), etc. It can be shown that the
limit is unique.

In general,

∫
C

a · dr depends on the path joining P and Q.

In Cartesian coordinates, we have∫
C

a · dr =

∫
C

ai dxi =

∫
C

(a1dx1 + a2dx2 + a3dx3)

16.4 Parametric Representation of a line integral

Often a curve in 3d can be parameterised by a single parameter, e.g. if the curve were the
trajectory of a particle then the parameter would be the time t. Sometimes the parameter
of a line integral is chosen to be the arc-length s along the curve C.

If we parameterise by λ (varying from λP to λQ) then

xi = xi(λ), with λP ≤ λ ≤ λQ

and ∫
C

a · dr =

∫ λQ

λP

(
a ·

dr

dλ

)
dλ =

∫ λQ

λP

(
a1
dx1

dλ
+ a2

dx2

dλ
+ a3

dx3

dλ

)
dλ

If necessary, the curve C may be subdivided into sections, each with a different parameteri-
sation (piecewise smooth curve).

Example: Let a = (3x2 + 6y) e
x
− 14yze

y
+ 20xz2e

z
. Evaluate

∫
C

a · dr between the

points with Cartesian coordinates (0, 0, 0) and (1, 1, 1), along the two paths C:

(i) (0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (1, 1, 1)

(3 contiguous straight lines parallel to the x, y & z axes respectively.)

(ii) x = λ, y = λ2, z = λ3; from λ = 0 to λ = 1.
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x

y

z

(1,0,0)

(1,1,0)

(1,1,1)

O

path 2

path 1

(i) (a) Along the line from (0, 0, 0) to (1, 0, 0), we have y = z = 0, so dy = dz = 0, hence
dr = e

x
dx and a = 3x2 e

x
(the parameter is x here), and∫ (1,0,0)

(0,0,0)

a · dr =

∫ x=1

x=0

3x2 dx =
[
x3
]1

0
= 1

(b) Along the line from (1, 0, 0) to (1, 1, 0), we have x = 1, dx = 0, z = dz = 0, so
dr = e

y
dy (the parameter is y here), and

a =
(

3x2 + 6y
)∣∣
x=1

e
x

= (3 + 6y) e
x

⇒
∫ (1,1,0)

(1,0,0)

a · dr =

∫ y=1

y=0

(3 + 6y) e
x
· e

y
dy = 0

(c) Along the line from (1, 1, 0) to (1, 1, 1), we have x = y = 1, dx = dy = 0, and
hence dr = e

z
dz and a = 9 e

x
− 14z e

y
+ 20z2 e

z
, therefore∫ (1,1,1)

(1,1,0)

a · dr =

∫ z=1

z=0

20z2 dz =

[
20

3
z3

]1

0

=
20

3

Adding the 3 contributions we get∫
C

a · dr = 1 + 0 +
20

3
=

23

3
along path (1)

(ii) To integrate a = (3x2 + 6y) e
x
− 14yze

y
+ 20xz2e

z
along path (2), we parameterise

r = λ e
x

+ λ2 e
y

+ λ3 e
z

dr

dλ
= e

x
+ 2λ e

y
+ 3λ2 e

z

a =
(
3λ2 + 6λ2

)
e
x
− 14λ5 e

y
+ 20λ7 e

z
so that∫

C

(
a ·

dr

dλ

)
dλ =

∫ λ=1

λ=0

(
9λ2 − 28λ6 + 60λ9

)
dλ =

[
3λ3 − 4λ7 + 6λ10

]1
0

= 5

Hence

∫
C

a · dr = 5 along path (2)

In this case, the integral of a from (0, 0, 0) to (1, 1, 1) depends on the path taken.
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The line integral

∫
C

a · dr is a scalar quantity. Another scalar line integral is

∫
C

f ds where

f(r) is a scalar field and ds is the infinitesimal arc-length introduced earlier.

Line integrals around a simple (doesn’t intersect itself) closed curve C are denoted by

∮
C

e.g.

∮
C

a · dr ≡ the circulation of a around C

Example: Let f(r) = ax2 + by2. Evaluate

∮
C

f ds around the unit circle C centred on the

origin in the x−y plane:

x = cosφ, y = sinφ, z = 0; 0 ≤ φ ≤ 2π.

We have f(r) = ax2 + by2 = a cos2 φ+ b sin2 φ

r = cosφ e
x

+ sinφ e
y

dr =
(
− sinφ e

x
+ cosφ e

y

)
dφ

so ds =
√
dr · dr =

(
sin2 φ+ cos2 φ

)1/2
dφ = dφ

Therefore, for this example,∮
C

f ds =

∫ 2π

0

(
a cos2 φ+ b sin2 φ

)
dφ = π (a+ b)

The length s of a curve C is given by s =

∫
C

ds. In this example s = 2π.

We can also define vector line integrals, e.g.

(i)

∫
C

a ds = e i

∫
C

ai ds in Cartesian coordinates.

(ii)

∫
C

a× dr = e i εijk

∫
C

aj dxk in Cartesian coordinates.

(iii)

∫
C

f dr = e i

∫
C

f dxi in Cartesian coordinates.

Example: Consider a current of magnitude I flowing along a wire following a closed path
C. The magnetic force on an element dr of the wire is Idr × B where B is the magnetic

field at r. Let B(r) = x e
x

+ y e
y
. Evaluate

∮
C

B × dr for a circular current loop of radius

a in the x−y plane, centred on the origin.

B = a cosφ e
x

+ a sinφ e
y

dr =
(
−a sinφ e

x
+ a cosφ e

y

)
dφ

Hence

∮
C

B × dr =

∫ 2π

0

(
a2 cos2 φ+ a2 sin2 φ

)
e
z
dφ = e

z
a2

∫ 2π

0

dφ = 2πa2 e
z
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17 Surface Integrals

S

S

d

n_ Let S be a two-sided surface in ordinary three-
dimensional space as shown. If an infinitesimal element
of surface with (scalar) area dS has unit normal n, then
the infinitesimal vector element of area is defined by

dS = n dS

Example: If S lies in the (x, y) plane, then dS = e
z
dx dy in Cartesian coordinates.

Physical interpretation: â·dS gives the projected (scalar) element of area onto the plane
with unit normal â.

For closed surfaces (e.g. a sphere) we choose n to be the outward normal. For open surfaces,
the sense of n is arbitrary – except that it is chosen in the same sense for all elements of the
surface.

n_

n_

n_

n_

n_

n_

n_

n_

−

If a(r) is a vector field defined on S, we define the (normal) surface integral∫
S

a · dS =

∫
S

a · n dS = lim
m→∞
δS → 0

m∑
i=1

(
a
(
r(i)
)
· n(i)

)
δS(i)

where we have formed the (Riemann) sum by dividing the surface S into m small areas, the
ith area having vector area δS(i). Clearly, the quantity a(r(i)) · n(i) is the component of a
normal to the surface at the point r(i)

• We use the notation

∫
S

a·dS for both open and closed surfaces. Sometimes the integral

over a closed surface is denoted by

∮
S

a · dS (not used here).

• Note that the integral over S is a double integral in each case. Hence surface integrals

are sometimes denoted by

∫∫
S

a · dS.
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Example: Let S be the surface of a unit cube (S = sum over all six faces).

On the front face, parallel to the (y, z) plane, at x = 1,

dS = n dS = e
x
dy dz

On the back face at x = 0 in the (y, z) plane,

dS = n dS = − e
x
dy dz

In each case, the unit normal n is an outward normal
because S is a closed surface.

x

z

O

_

_

y
dz

dy

1

1

1

dS

dS

If a(r) is a vector field, then the integral

∫
S

a · dS over the front face shown is

∫ z=1

z=0

∫ y=1

y=0

a · e
x
dy dz =

∫ z=1

z=0

∫ y=1

y=0

ax

∣∣∣∣
x=1

dy dz

The integral over y and z is an ordinary double integral over a square of side 1. The integral
over the back face is

−
∫ z=1

z=0

∫ y=1

y=0

a · e
x
dy dz = −

∫ z=1

z=0

∫ y=1

y=0

ax

∣∣∣∣
x=0

dy dz

The total integral is the sum of contributions from all 6 faces.

17.1 Parametric form of the surface integral

Suppose the points on a surface S are defined by two real parameters u and v

r = r(u, v) = (x(u, v), y(u, v), z(u, v))

• the lines r(u, v) for fixed u, variable v, and

• the lines r(u, v) for fixed v, variable u

are parametric lines and form a grid on the surface S as shown.

lines of

constant

lines of

constantu

n_

S

.

v
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If we change u and v by du and dv respectively, then r changes by dr with

dr =
∂r

∂u
du+

∂r

∂v
dv

Along the curves v = constant , we have dv = 0, and so dr is simply

dr
u

=
∂r

∂u
du

where
∂r

∂u
is a vector which is tangent to the surface, and tangent to the lines v = constant .

Similarly, for u = constant , we have

dr
v

=
∂r

∂v
dv

so
∂r

∂v
is tangent to lines u = constant .

dS

dr_

dr_

v=v

v=v

u=u

u=u

u

v

1

2

2

1

_n

We can therefore construct a unit vector n, normal to the surface at r

n =

(
∂r

∂u
×
∂r

∂v

)/∣∣∣∣∂r∂u × ∂r

∂v

∣∣∣∣
The vector element of area, dS, has magnitude equal to the area of the infinitesimal paral-
lelogram shown, and points in the direction of n, therefore we can write

dS = dr
u
× dr

v
=

(
∂r

∂u
du

)
×
(
∂r

∂v
dv

)
=

(
∂r

∂u
×
∂r

∂v

)
du dv

dS =

(
∂r

∂u
×
∂r

∂v

)
du dv

Finally, our integral is parameterised as

∫
S

a · dS =

∫
v

∫
u

a ·
(
∂r

∂u
×
∂r

∂v

)
du dv

We use two integral signs when writing surface integrals in terms of explicit parameters u
and v. The limits for the integrals over u and v must be chosen appropriately for the surface.
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18 More on Surface and Volume Integrals

18.1 The Concept of Flux

θ

_
v_

dS cos

dS

θ

Let v(r) be the velocity at a point r in a moving fluid.
In a small region, where v is approximately constant,
the volume of fluid crossing the element of vector area
dS = n dS in time dt is(∣∣v∣∣ dt) (dS cos θ) =

(
v · dS

)
dt

because the area normal to the direction of flow is
v̂ · dS = dS cos θ.

Therefore

v · dS = volume per unit time of fluid crossing dS

hence

∫
S

v · dS = volume per unit time of fluid crossing a finite surface S

More generally, for a vector field a(r),

The surface integral

∫
S

a · dS is called the flux of a through the surface S

The concept of flux is useful in many different contexts e.g. flux of molecules in a gas;
electromagnetic flux, etc.

Example: Let S be the surface of sphere x2
1 +x2

2 +x2
3 = R2. Find n and dS, and evaluate

the total flux of the vector field a(r) = r̂/r2 out of the sphere.

An arbitrary point r on S may be parameterised in spherical polar co-ordinates θ and φ as

r = R sin θ cosφ e 1 +R sin θ sinφ e 2 +R cos θ e 3 {0 ≤ θ < π, 0 ≤ φ < 2π}

so
∂r

∂θ
= R cos θ cosφ e 1 +R cos θ sinφ e 2 −R sin θ e 3

and
∂r

∂φ
= −R sin θ sinφ e 1 +R sin θ cosφ e 2 + 0 e 3
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θ

φ

r

e
e

e_

_
_

e

e

_

_1

2

e_
3

r

φ

θ

dS

Therefore

∂r

∂θ
×
∂r

∂φ
=

∣∣∣∣∣∣
e 1 e 2 e 3

R cos θ cosφ R cos θ sinφ −R sin θ
−R sin θ sinφ R sin θ cosφ 0

∣∣∣∣∣∣
= R2 sin2 θ cosφ e 1 +R2 sin2 θ sinφ e 2 +R2 sin θ cos θ

(
cos2 φ+ sin2 φ

)
e 3

= R2 sin θ (sin θ cosφ e 1 + sin θ sinφ e 2 + cos θ e 3)

= R2 sin θ r̂

Hence n = r̂

and dS =
∂r

∂θ
×
∂r

∂φ
dθ dφ = R2 sin θdθ dφ r̂

This provides an algebraic derivation of the result we obtained geometrically in Section (16.1).
On the surface S, we have r = R, and so the vector field a(r) = r̂/R2 . The flux of a through
the closed surface S is then∫

S

a · dS =

∫ π

0

sin θ dθ

∫ 2π

0

dφ = 4π

In this simple example, the result of the integral is just the surface area of a unit sphere.

Spherical basis: The normalised vectors (shown in the figure)

e r = r̂ , e θ =
∂r

∂θ

/∣∣∣∣∂r∂θ
∣∣∣∣ , eφ =

∂r

∂φ

/∣∣∣∣ ∂r∂φ
∣∣∣∣ ,

which we may write explicitly as

e r = sin θ cosφ e 1 + sin θ sinφ e 2 + cos θ e 3

e θ = cos θ cosφ e 1 + cos θ sinφ e 2 − sin θ e 3

eφ = − sinφ e 1 + cosφe 2

form an orthonormal basis, i.e. e
r
· e θ = e

θ
· eφ = e

φ
· e r = 0.

Since e
r
, e

θ
and e

φ
depend on position r, they form a non-Cartesian or curvilinear basis.
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18.2 Other Surface Integrals

If f(r) is a scalar field, we may define a scalar surface integral∫
S

f dS

For example, the surface area of the surface S is∫
S

dS =

∫
S

∣∣dS∣∣ =

∫
v

∫
u

∣∣∣∣∂r∂u × ∂r

∂v

∣∣∣∣ du dv
We may also define vector surface integrals∫

S

f dS

∫
S

a dS

∫
S

a× dS

Each of these is a double integral, and is evaluated in a similar fashion to the scalar integrals,
the result being a vector in each case.

Example: The vector area of the (open) hemisphere, x2
1 + x2

2 + x2
3 = R2, (x3 ≥ 0), of

radius R, is, using spherical polars,

S =

∫
S

dS =

∫ 2π

φ=0

∫ π/2

θ=0

R2 sin θ e r dθ dφ .

Using e r = sin θ cosφ e 1 + sin θ sinφ e 2 + cos θ e 3 we obtain

S = e 1R
2

∫ π/2

0

sin2 θ dθ

∫ 2π

0

cosφ dφ + e 2R
2

∫ π/2

0

sin2 θ dθ

∫ 2π

0

sinφ dφ +

e 3R
2

∫ π/2

0

sin θ cos θ dθ

∫ 2π

0

dφ

= 0 + 0 + πR2 e 3

The vector surface integral over the full sphere is zero because the contributions from the
upper and lower hemispheres cancel. Similarly, the vector area of a closed hemisphere is
zero because the vector area of the bottom face is −πR2 e 3.

In fact, for any closed surface, ∫
S

dS = 0

For a proof, it is simplest to use the divergence theorem applied to an arbitrary constant
vector c – see later.)
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18.3 Parametric form of Volume Integrals

We have already met and revised volume integrals in Section (16.2). They are conceptually
simpler than line and surface integrals because the element of volume dV is a scalar quantity.

In this section we discuss the parametric form of volume integrals. Suppose we can write
r in terms of three real parameters u, v and w, so that r = r(u, v, w). If we make a small
change in each of these parameters, then r changes by

dr =
∂r

∂u
du+

∂r

∂v
dv +

∂r

∂w
dw

Along the curves {v = constant, w = constant}, we have dv = dw = 0, so dr is simply

dr
u

=
∂r

∂u
du

with dr
v

and dr
w

having analogous definitions.

The vectors dr
u
, dr

v
and dr

w
form the sides of an infinites-

imal parallelepiped of volume

dV =
∣∣dr

u
· dr

v
× dr

w

∣∣
dV =

∣∣∣∣∂r∂u · ∂r∂v × ∂r

∂w

∣∣∣∣ du dv dw
dr

_ dr
v

u
_

_dr
w

Example: Consider a circular cylinder of radius a, height c. We can parameterise r using
cylindrical coordinates. Within the cylinder, we have

r = ρ cosφ e 1 + ρ sinφ e 2 + ze 3 {0 ≤ ρ ≤ a, 0 ≤ φ ≤ 2π, 0 ≤ z ≤ c}

Thus
∂r

∂ρ
= cosφ e 1 + sinφ e 2

∂r

∂φ
= −ρ sinφ e 1 + ρ cosφ e 2

∂r

∂z
= e 3

And so dV =

∣∣∣∣∂r∂ρ · ∂r∂φ × ∂r

∂z

∣∣∣∣ dρ dφ dz = ρ dρ dφ dz

φ

ρ

z

e

e

ee

e_ e

_

_

_ z

1 2
_

_
3

ρ

φ

c

0

dV
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The volume of the cylinder is just∫
V

dV =

∫ z=c

z=0

∫ φ=2π

φ=0

∫ ρ=a

ρ=0

ρ dρ dφ dz = π a2c.

Cylindrical basis: the normalised vectors

e ρ =
∂r

∂ρ

/ ∣∣∣∣∂r∂ρ
∣∣∣∣ ; eφ =

∂r

∂φ

/ ∣∣∣∣ ∂r∂φ
∣∣∣∣ ; e z =

∂r

∂z

/ ∣∣∣∣∂r∂z
∣∣∣∣

(shown on the figure) form an orthonormal curvilinear non-Cartesian basis.

Exercise: For spherical polars: r = r sin θ cosφ e 1 + r sin θ sinφ e 2 + r cos θ e 3 show that

dV =

∣∣∣∣∂r∂r · ∂r∂θ × ∂r

∂φ

∣∣∣∣ dr dθ dφ = r2 sin θ dr dθ dφ

19 The Divergence Theorem

19.1 Integral definition of divergence

Let a be a vector field in the region R, and let P be a point in R, then the divergence of a
at P may be defined by

div a = lim
δV→0

1

δV

∫
δS

a · dS

where δS is a closed surface in R which encloses the volume δV . The limit must be taken
so that the point P is within δV . (We assume the limit is independent of the shape of δV .)

This definition of div a is basis independent.

We now prove that our original definition of div is recovered in Cartesian co-ordinates

Let P be a point with Cartesian coordinates (x0, y0, z0)
situated at the centre of a small rectangular block of size
δx × δy × δz, so that its volume is δV = δx δy δz.

• On the front face of the block, orthogonal to the
x axis at x = x0 + δx/2, we have outward normal
n = e

x
and so dS = e

x
dy dz

• On the back face of the block, orthogonal to the
x axis at x = x0 − δx/2, we have outward normal
n = −e

x
and so dS = −e

x
dy dz

O

_

_

dz

dy

P

δ
y

x

δ

δ
z

dS

dS

z

x

y

Hence a · dS = ± ax dy dz on these two faces. Let us denote the union of the two surfaces
orthogonal to the e 1 axis by Sx.
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The contribution of these two surfaces to the integral

∫
S

a · dS is given by

∫
Sx

a · dS =

∫
z

∫
y

{
ax(x0 + δx/2, y, z)− ax(x0 − δx/2, y, z)

}
dy dz

=

∫
z

∫
y

{[
ax(x0, y, z) +

δx
2

∂ax
∂x

(x0, y, z) +O(δ2
x)

]
−
[
ax(x0, y, z)− δx

2

∂ax
∂x

(x0, y, z) +O(δ2
x)

]}
dy dz

=

∫
z

∫
y

δx
∂ax
∂x

(x0, y, z) dy dz

where we have dropped terms of O(δ2
x) in the Taylor expansion of ax about (x0, y, z).

So
1

δV

∫
Sx

a · dS =
1

δy δz

∫
z

∫
y

∂ax
∂x

(x0, y, z) dy dz

As we take the limit δx, δy, δz → 0 the integral tends to
∂ax
∂x

∣∣∣∣
(x0,y0,z0)

δy δz and we obtain

lim
δV→0

1

δV

∫
Sx

a · dS =
∂ax
∂x

(x0, y0, z0)

With similar contributions from the other 4 faces, we find

div a =
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

= ∇ · a

in agreement with our original definition in Cartesian co-ordinates. Thus we can continue
to use the notation ∇ · a for both forms.

Note that the integral definition gives an intuitive understanding of the divergence in terms
of net flux leaving a small volume around a point r. In pictures: for a small volume dV

dV dV dV

(flux in = flux out)

div a = 0___div a >  0 div a < 0
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19.2 The Divergence Theorem (Gauss’ Theorem)

Let a be a vector field in a volume V , and S be the closed surface bounding V , then

∫
V

∇ · a dV =

∫
S

a · dS

Proof: We derive the divergence theorem by making use of the integral definition of ∇ · a

∇ · a = lim
δV→0

1

δV

∫
δS

a · dS.

Since this definition of ∇ · a is valid for volumes of arbitrary shape, we can build a smooth
surface S from a large number, N , of blocks of volume ∆V (i) and surface ∆S(i). We have

∇ · a(r(i)) =
1

∆V (i)

∫
∆S(i)

a · dS +O(ε(i))

where ε(i) → 0 as ∆V (i) → 0. Now multiply both sides by ∆V (i) and sum over all i

N∑
i=1

∇ · a(r(i)) ∆V (i) =
N∑
i=1

∫
∆S(i)

a · dS +
N∑
i=1

ε(i) ∆V (i)

On the RHS the contributions from surface elements interior to S cancel. This is because
where two blocks touch, the outward normals are in opposite directions, implying that the
contributions to the respective integrals cancel.

Taking the limit N →∞ we have, as claimed,∫
V

∇ · a dV =

∫
S

a · dS .

19.3 Examples of the use of the Divergence Theorem

Volume of a body: This is simply given by

V =

∫
V

dV

Recalling that ∇ · r = 3 we can write

V =
1

3

∫
V

∇ · r dV

On applying the divergence theorem, this becomes

V =
1

3

∫
S

r · dS
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Example: Consider the hemisphere x2 + y2 + z2 ≤ R2 centered on e 3 with its bottom
face at z = 0. Recalling that the divergence theorem holds for a closed surface, the above
equation for the volume of the hemisphere tells us

V =
1

3

[∫
hemisphere

r · dS +

∫
bottom

r · dS
]
.

On the bottom face dS = −e
z
dS so that r · dS = −z dS = 0 since z = 0. Hence the only

contribution comes from the (open) surface of the hemisphere and we see that

V =
1

3

∫
hemisphere

r · dS .

We can evaluate this by using spherical polars for the surface integral. For a hemisphere of
radius R we showed previously that

dS = R2 sin θ dθ dφ e r .

On the hemisphere, r · dS = Re r · dS = R3 sin θ dθ dφ so that∫
S

r · dS = R3

∫ π/2

0

sin θ dθ

∫ 2π

0

dφ = 2πR3

giving the anticipated result

V =
2πR3

3

19.4 The Continuity Equation

Consider a fluid with density field ρ(r) and velocity field v(r). We have seen previously that
the volume flux (volume per unit time) flowing across a surface is given by

∫
S
v · dS. The

corresponding mass flux (mass per unit time) is given by∫
S

(
ρv
)
· dS ≡

∫
S

J · dS

where J = ρv is called the mass current density .

Now consider a volume V bounded by the closed surface S containing no sources or sinks of
fluid. Conservation of mass means that the outward mass flux through the surface S must
be equal to the rate of decrease of mass contained in the volume V.∫

S

J · dS = −∂M
∂t

.

The mass in V may be written as M =
∫
V
ρ dV . Therefore we have

∂

∂t

∫
V

ρ dV +

∫
S

J · dS = 0 .

We now use the divergence theorem to rewrite the second term as a volume integral and we
obtain ∫

V

[
∂ρ

∂t
+∇ · J

]
dV = 0

Since this holds for arbitrary V , we must have that
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∂ρ

∂t
+∇ · J = 0

This equation, known as the continuity equation, appears in many different contexts because
it holds for any conserved quantity. Here we considered mass density ρ and mass current
density J of a fluid; but equally it could have been number density of molecules in a gas
and current density of molecules; electric charge density and electric current density vector;
thermal energy density and heat current density vector; or even more abstract conserved
quantities such as probability density and probability current density in quantum mechanics.

To understand better the divergence of a vector field consider the divergence of the current
in the continuity equation:

if ∇ · J(r) > 0 then
∂ρ

∂t
< 0 and the mass density at r decreases

if ∇ · J(r) < 0 then
∂ρ

∂t
> 0 and the mass density at r increases

19.5 Sources and Sinks

Static case: Consider time independent behaviour where ∂ρ
∂t

= 0. The continuity equation
tells us that for the density to be constant in time we must have ∇ · J = 0 so that flux into
a point equals flux out.

However if we have a source or a sink of the field, the divergence is not zero at that point.
In general the quantity

1

V

∫
S

a · dS

tells us whether there are sources or sinks of the vector field a within V . If V contains

• a source, then

∫
S

a · dS =

∫
V

∇ · a dV > 0

• a sink, then

∫
S

a · dS =

∫
V

∇ · a dV < 0

If S contains neither sources nor sinks, then

∫
S

a · dS = 0.

Electrostatics: As an example consider electrostatics. You will have learned that electric
field lines can only start and stop at charges. A positive charge is a source of electric
field (i.e. it creates a positive flux) and a negative charge is a sink (i.e. it absorbs flux, or,
equivalently, creates a negative flux).

The electric field at r due to a charge q at the origin is

E =
q

4πε0

r̂

r2
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Then, for r 6= 0,

∇ · E =
q

4πε0
∇ ·
( r
r3

)
=

q

4πε0

(
∇
(

1

r3

)
· r +

∇ · r
r3

)
=

q

4πε0

(
−

3r

r5
· r +

3

r3

)
= 0

We also have ∫
sphere

E · dS =
q

4πε0

∫
S

r · dS
r3

=
q

4πε0
4π =

q

ε0

(where the surface integral has been evaluated in section 18.1).

Now ∇ · E = 0, ∀ r 6= 0, so for any surface S enclosing a volume V which includes the
origin, we have∫

S

E · dS =

∫
V

∇ · E dV =

∫
sphere

∇ · E dV =

∫
sphere

E · dS =
q

ε0

We can replace the single charge q by a collection of charges
∑

i qi or a charge density ρ(r).
Hence ∫

V

∇ · E dV =

∫
S

E · dS =
1

ε0

∫
V

ρ(r) dV

The second equality is Gauss’ Law of electrostatics.

Since this must hold for arbitrary V , we find

∇ · E =
ρ(r)

ε0

which holds for all r. This is Maxwell’s first equation of electromagnetism.

19.6 Corollaries of the divergence theorem

We may deduce several immediate consequences of the divergence theorem∫
V

∇ · a dV =

∫
S

a · dS

(i) Let a = c where c is a constant vector, then
∫
S
c · dS = 0. Since this holds for

arbitrary c, we must have ∫
S

dS = 0

for any closed surface S as claimed previously.

(ii) Apply the divergence theorem to a× c with c = constant. Then

∇ · (a× c) = ∂i (εijk aj ck) = ck εkij ∂i aj = c · (∇× a)

and therefore

c ·
∫
V

(∇× a) dV =

∫
V

∇ · (a× c) dV =

∫
S

dS · (a× c) = c ·
∫
S

dS × a

This holds for all constant vectors c, hence∫
V

∇× a dV =

∫
S

dS × a
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(iii) In suffix notation, the divergence theorem becomes∫
V

∂i ai dV =

∫
S

ai dSi

For a second-rank tensor T , we regard one index (j in this case) as a ‘spectator’ index,
so ∫

V

∂i Tij dV =

∫
S

Tij dSi

This is the generalised divergence theorem. In particular with Tij = −εijkak we recover
the result in (ii) above.

20 Line Integral Definition of Curl, Stokes’ Theorem

20.1 Line Integral Definition of Curl

Let δS be a small planar surface containing the
point P , bounded by a closed curve δC, with unit
normal n and (scalar) area δS. Let a be a vector
field defined on δS.

n_

.

δ

δ PS

C

The component of ∇× a parallel to n is defined to be

n ·
(
∇× a

)
= lim

δS→0

1

δS

∮
δC

a · dr

NB: The integral around δC is taken in the right-hand sense with respect to the normal
n to the surface – as in the figure above.

This definition of curl is independent of the choice of basis. The usual Cartesian form for
curl can be recovered from this general definition by considering small rectangles parallel to
the x−y, y−z, and z−x planes respectively.

Let P be a point with Cartesian coordinates (x0, y0, z0) situated at the centre of a small
rectangle δC = ABCD of size δx × δy, area δS = δx δy, parallel to the x−y plane.
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e

e

e

n =

_

_

_

_ e_

z

x0

y
0

δx

y

A B

CD

z

y

δx

The line integral around δC is given by the sum of four terms∮
δC

a · dr =

∫ B

A

a · dr +

∫ C

B

a · dr +

∫ D

C

a · dr +

∫ A

D

a · dr

Since r = xe
x

+ ye
y

+ ze
z

we have dr = e
x
dx along D → A and C → B, and dr = e

y
dy

along A→ B and D → C. Therefore∮
δC

a · dr =

∫ B

A

ay dy −
∫ B

C

ax dx −
∫ C

D

ay dy +

∫ A

D

ax dx

For small δx & δy, we can Taylor expand the integrands,∫ A

D

ax dx =

∫ A

D

ax(x, y0 − δy/2, z0) dx

=

∫ x0+δx/2

x0−δx/2

[
ax(x, y0, z0) − δy

2

∂ax
∂y

(x, y0, z0) + O(δ2
y)

]
dx

∫ B

C

ax dx =

∫ B

C

ax(x, y0 + δy/2, z0) dx

=

∫ x0+δy/2

x0−δx/2

[
ax(x, y0, z0) +

δy
2

∂ax
∂y

(x, y0, z0) + O(δ2
y)

]
dx

so

1

δS

[∫ A

D

a · dr +

∫ C

B

a · dr
]

=
1

δx δy

[∫ A

D

ax dx −
∫ B

C

ax dx

]

=
1

δxδy

∫ x0+δx/2

x0−δx/2

[
−δy

∂ax
∂y

(x, y0, z0) + O(δ2
y)

]
dx

→ −∂ax
∂y

(x0, y0, z0) as δx, δy → 0

A similar analysis of the line integrals along A→ B and C → D gives

1

δS

[∫ B

A

a · dr +

∫ D

C

a · dr
]
→ ∂ay

∂x
(x0, y0, z0) as δx, δy → 0
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Adding the results gives, for our line integral definition of curl,

e
z
·
(
∇× a

)
=
(
∇× a

)
z

=

[
∂ay
∂x
− ∂ax

∂y

]
(x0, y0, z0)

in agreement with our original definition in Cartesian coordinates.

The other components of ∇× a can be obtained from similar rectangles parallel to the y−z
and x−z planes, respectively.

It can be shown that ∇ × a, when defined in this way, is independent of the shape of the
infinitesimal area δS.

20.2 Stokes’ Theorem

Let S be an open surface, bounded by a simple closed
curve C, and let a be a vector field defined on S, then

∮
C

a · dr =

∫
S

(
∇× a

)
· dS

where C is traversed in a right-hand sense about dS.
As usual, dS = n dS where n is the unit normal to S.

dS

S

_

C

n

.

_

Proof: Divide the surface area S intoN adjacent small surfaces as indicated in the diagram.
Let δS(i) = δS(i) n(i) be the vector element of area at r(i). Using the integral definition of
curl,

n ·
(
∇× a

)
= lim

δS→0

1

δS

∮
δC

a · dr

we multiply by δS(i) and sum over all i to get

N∑
i=1

(
∇× a

(
r(i)
))
· n(i) δS(i) =

N∑
i=1

∮
δC(i)

a · dr +
N∑
i=1

ε(i) δS(i)

where δC(i) is the curve enclosing the area δS(i), and the quantity ε(i) → 0 as δS(i) → 0.

n

C

C

_

_

.

n

δ

δ

C

(1)

(2)

(1)

(2)

85



Since each small closed curve δC(i) is traversed in the same sense, then, from the diagram,

all contributions to
N∑
i=1

∮
δC(i)

a · dr cancel, except on those curves where part of δC(i) lies

on the curve C. For example, the line integrals along the common sections of the two small
closed curves δC(1) and δC(2) in the figure cancel exactly. Therefore

N∑
i=1

∮
δC(i)

a · dr =

∮
C

a · dr

Hence ∮
C

a · dr =

∫
S

(
∇× a

)
· dS =

∫
S

n ·
(
∇× a

)
dS

20.3 Examples of the use of Stokes’ Theorem

Hemisphere: Given the vector field a = 4ye
x

+ xe
y

+ 2ze
z

, verify Stokes’ theorem for

the (open) hemispherical surface x2 + y2 + z2 = R2 with z > 0.

On the hemisphere, we have ∇ × a = −3e
z

, and we have shown previously that dS =
R2 sin θ dθ dφ e

r
.

Direct integration then gives∫
hemisphere

∇× a · dS =

∫
hemisphere

R2 sin θ dθ dφ e
r
· (−3e

z
)

= −6πR2

∫ π/2

0

sin θ cos θ dθ = − 3πR2

The closed curve C bounding the hemisphere is a circle of radius R in the x−y plane.
Parameterising this by x = R cosφ, y = R sinφ, gives dx = −R sinφ dφ, dy = R cosφ dφ,
and so ∮

C

a · dr =

∮
C

(4ydx+ xdy)

=

∫ 2π

0

(
−4R2 sin2 φ+R2 cos2 φ

)
dφ = − 3πR2

Planar Areas: Consider a planar surface parallel to the x−y plane, and let the vector
field a be

a =
1

2

[
−y e

x
+ x e

y

]
We find ∇× a = e

z
, and the vector element of area normal to the x−y plane is dS = dS e

z
.

Hence ∫
S

∇× a · dS =

∫
S

e
z
· dS =

∫
S

dS = S

We can then use Stokes’ theorem to find the area of the surface

S =

∮
C

a · dr =
1

2

∮
C

(−ye
x

+ xe
y
) · (dx e

x
+ dy e

y
)

which gives
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S =
1

2

∮
C

(x dy − y dx)

where C is the closed curve bounding the surface.

Example: Find the area inside the curve

x2/3 + y2/3 = 1 .

Use the parameterisation x = cos3 φ, y = sin3 φ, for 0 ≤ φ ≤ 2π, so that

dx

dφ
= −3 cos2 φ sinφ ,

dy

dφ
= 3 sin2 φ cosφ

which gives

S =
1

2

∮
C

(
x
dy

dφ
− y dx

dφ

)
dφ

=
1

2

∫ 2π

0

(
3 cos4 φ sin2 φ+ 3 sin4 φ cos2 φ

)
dφ

=
3

2

∫ 2π

0

sin2 φ cos2 φ dφ =
3

8

∫ 2π

0

sin2 2φ dφ =
3π

8

20.4 Corollaries of Stokes’ Theorem

We may deduce several immediate consequences of Stokes’ theorem,∫
S

∇× a · dS =

∮
C

a · dr

where C is the boundary (traversed in the anticlockwise direction) of the open surface S.

(i) If a = c, where c is a constant vector, then ∇ × a = 0. Therefore c ·
∮
C

dr = 0, and

because c is arbitrary, we have ∮
C

dr = 0

(ii) Applying Stokes’ theorem to a = φ c where c is a constant vector, we have(
∇× (φ c)

)
· dS = εijk ∂j(φ ck) dSi = ck εijk dSi ∂jφ = c · (dS ×∇φ)

which gives ∫
S

(
∇× (φ c)

)
· dS = c ·

∫
S

dS ×∇φ = c ·
∮
C

φ dr

This holds for all constant vectors c, so∫
S

dS ×∇φ =

∮
C

φ dr
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(iii) In terms of indices, Stokes’ theorem is

εijk

∫
S

∂ak
∂xj

dSi =

∮
C

ak dxk

For a second-rank tensor T , we again regard one index as a ‘spectator’ index, so

εijk

∫
S

∂Tkl
∂xj

dSi =

∮
C

Tkl dxk

This is the generalised Stokes’ theorem. In particular, with Tkl = φ δkl we recover the
result in (ii) above.

21 The Scalar Potential

21.1 Defining the scalar potential

A vector field a(r) is irrotational or conservative if its curl vanishes, i.e.

∇× a = 0

Path independence of line integrals for conservative fields

Let ∇ × a = 0 and consider two (arbitrary) paths
C1 and C2 from point r

0
to point r, say. Applying

Stokes’ theorem to the open surface S bounded by
these two paths gives

0 =

∫
S

(∇×a)·dS =

∫
C1

a(r′)·dr′ −
∫
C2

a(r′)·dr′

where the −ve sign occurs in the second integral be-
cause both paths are from r

0
to r. (We use r′ as

integration variable to distinguish it from the limits
of integration r

0
and r .)

r_

_

0

2

1

C

C

S

r

Hence ∫
C1

a(r′) · dr′ =
∫
C2

a(r′) · dr′

This is true for any S, and therefore for any paths C1 and C2 between r
0

and r.

Since

∫
a(r′) ·dr′ is path independent it can be a function only of the end points of the path.

Clearly, the converse is also true: if the line integral between two points is path independent,
then the line integral around any closed curve (connecting the two points) is zero, and hence
∇× a = 0. We just reverse the steps of the argument above.

Therefore

∇× a = 0 ⇔ path independence of

∫ r

r 0

a(r′) · dr′
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21.2 A Theorem for Conservative Vector Fields

Since the line integral of a conservative vector field between two fixed points r
0

and r is path
independent, there must exist a function φ(r) such that

φ(r)− φ(r
0
) =

∫ r

r 0

a(r′) · dr′ . (35)

The field φ(r) is called the scalar potential of the vector field a(r).

It is useful to invert this equation (and to give a more conventional result) by considering
two neighbouring points r and r + dr, for which

dφ = φ(r + dr)− φ(r)

=
[
φ(r + dr)− φ(r

0
)
]
−
[
φ(r)− φ(r

0
)
]

=

∫ r+dr

r 0

a(r′) · dr′ −
∫ r

r 0

a(r′) · dr′ (using equation (35))

=

∫ r+dr

r

a(r′) · dr′ (using path independence)

= a(r) · dr + O(|dr|2)

But dφ = ∇φ · dr (by definition), and since dr is arbitrary, we must have

a(r) = ∇φ(r)

The converse is trivial to prove: if a = ∇φ, then ∇× a = ∇× (∇φ) ≡ 0.

Therefore

∇× a = 0 ⇔ a = ∇φ

To determine whether a vector field is conservative, one simply checks whether ∇× a = 0.

NB: The scalar potential φ(r) is only determined up to a constant. If ψ = φ + constant
then ∇ψ = ∇φ, so ψ is an equally good potential. The freedom in the constant corresponds
to the freedom in choosing r

0
to calculate the potential. So φ(r

0
) in equation (35) is just an

irrelevant constant. Equivalently, the absolute value of a scalar potential has no meaning,
only potential differences are significant.
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21.3 Finding Scalar Potentials

Method (1): Integration along a straight line

We have shown that the scalar potential φ(r) for a conservative vector field a(r) can be
constructed from a line integral which is independent of the path of integration between the
endpoints. Therefore, a convenient way of evaluating such integrals is to integrate along a
straight line. Depending on the convergence of the integral, we have two (obvious) choices:

(i) r
0

= 0: If φ(r = 0) is finite, we can parameterise the straight line by r′ = λ r, with
0 ≤ λ ≤ 1, so dr′ = dλ r, and hence

φ(r) =

∫ r

0

a(r′) · dr′ =

∫ λ=1

λ=0

a(λr) · r dλ ,

(ii) |r| = ∞: If φ(r → ∞) is finite, we parameterise the straight line by r′ = λ r, with
1 ≤ λ <∞, so dr′ = dλ r, and hence

φ(r) =

∫ r

∞
a(r′) · dr′ =

∫ λ=1

λ=∞
a(λr) · r dλ ,

Example 1: Let a = (2xy + z3)e
x

+ x2e
y

+ 3xz2e
z
.

We first check that ∇× a = 0, so the field is conservative (exercise). Then

φ(r) =

∫ 1

0

a(λr) · r dλ

=

∫ 1

0

[(
2λ2xy + λ3z3

)
x+ λ2x2y + λ33xz3

]
dλ

=
2

3
x2y +

1

4
xz3 +

1

3
x2y +

3

4
xz3

= x2y + xz3

NB: Always check that your potential φ(r) satisfies a(r) = ∇φ(r) .

Example 2: Let a(r) = 2 (c · r) r + r2 c where a is a constant vector.

Check that a is conservative:

∇× a = 2
[
∇
(
c · r

)
× r +

(
c · r

)
∇× r

]
+
(
∇ r2

)
× c

= 2
[
c× r + 0

]
+ 2 r × c = 0

or, using indices,

(∇× a)i = εijk ∂j (2 (cl xl)xk + xl xl ck)

= εijk
(
2 cl δjl xk + 2 c · r δjk + 2xl δlj ck

)
= 2εijk (cj xk + xj ck) = 0
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Thus

φ(r) =

∫ r

0

a(r′) · dr′ =

∫ 1

0

a
(
λ r
)
·
(
dλ r

)
=

∫ 1

0

(
2
(
c · λ r

)
λ r + λ2r2 c

)
· r dλ

=
(
2 (c · r) r · r + r2 (c · r)

) ∫ 1

0

λ2 dλ

= r2 (c · r)

This is a fairly elegant method and is generally applicable.

Method (2): Direct integration “by inspection” (guessing)

Sometimes the result can be spotted directly.

Example 1 (revisited):

a = (2xy + z3, x2, 3xz2)

=

(
∂

∂x

(
x2y + xz3

)
,
∂

∂y

(
x2y + xz3

)
,
∂

∂z

(
x2y + xz3

))
= ∇

(
x2y + xz3

)
Similarly, if a(r) = (c · r) c where c is a constant vector, then

a(r) = (c · r) c = (c · r)∇ (c · r) = ∇
(

1

2
(c · r)2 + const

)
This can be tricky to spot though.

Method (3): Direct integration

Since a = ∇φ, we have

∂φ

∂x
= ax(x, y, z)

∂φ

∂y
= ay(x, y, z)

∂φ

∂z
= az(x, y, z)

We can integrate these equations separately to give

φ(x, y, z) =

∫ x

ax(x
′, y, z) dx′ + f(y, z)

φ(x, y, z) =

∫ y

ay(x, y
′, z) dy′ + g(x, z)

φ(x, y, z) =

∫ z

az(x, y, z
′) dz′ + h(x, y)

and then determine the “constants” of integration f(y, z), g(x, z) and h(x, y) by consistency.
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Example 1 (revisited): Let a = (2xy + z3)e
x

+ x2e
y

+ 3xz2e
z
. Then

φ = x2y + xz3 + f(y, z)

φ = x2y + g(x, z)

φ = xz3 + h(x, y)

These agree if we choose f(y, z) = 0, g(x, z) = xz3 and h(x, y) = x2y3.

This is a straightforward method but it can get very messy.

21.4 Conservative Forces: Conservation of Energy

We now show how the name conservative field arises in Physics. Let the vector field F (r)
be the total force acting on a particle of mass m at position r. We will show that for a
conservative force, where we can write

F = −∇V ,
the total energy is constant in time. The force is minus the gradient of the (scalar) potential.
The minus sign is conventional.

Proof: Let r(t) be the position vector of a particle at time t. Denote the first and second
derivatives of r with respect to time by ṙ (velocity) and r̈ (acceleration) respectively.

The particle moves under the influence of Newton’s Second Law:

mr̈ = F (r)

Consider a small displacement along the path of the particle: r → r + dr taking time dt.
Then

m r̈ · dr = F (r) · dr = −∇V (r) · dr .
Integrating this expression along a path from r

A
at time t = tA , to r

B
at time t = tB yields

m

∫ rB

rA

r̈ · dr = −
∫ rB

rA

∇V (r) · dr.

We can simplify the left-hand side of this equation as follows,

m

∫ rB

rA

r̈ · dr = m

∫ tB

tA

r̈ · ṙ dt = m

∫ tB

tA

1

2

d

dt

(
ṙ · ṙ

)
dt =

1

2
m
(
v2
B − v2

A

)
,

where vA and vB are the magnitudes of the velocities at points A and B respectively.

The right-hand side gives

−
∫ rB

rA

∇V (r) · dr = −
∫ rB

rA

dV = VA − VB

where VA and VB are the values of the potential V at r
A

and r
B

, respectively. Therefore

1

2
mv2

A + VA =
1

2
mv2

B + VB

and the total energy E ≡ 1

2
mv2 + V is conserved — it’s constant in time.

(Choosing F = +∇V would lead to E ≡ 1

2
mv2 − V , a less desirable convention.)
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21.5 Physical Examples of Conservative Forces

Newtonian gravity and the electrostatic force are both conservative. Frictional forces are not
conservative: energy is dissipated and work is done in traversing a closed path. In general,
time-dependent forces are not conservative.

The foundation of Newtonian Gravity is Newton’s Law of Gravitation. The force F on a
particle of mass m1 at r due to a particle of mass m situated at the origin is given (in SI
units) by

F (r) = −Gmm1

r

r3

where G = 6.672 59(85)× 10−11Nm2kg2 is Newton’s Gravitational Constant.

The gravitational field G(r) due to the mass at the origin is defined by

F (r) ≡ m1G(r) or G(r) = −Gm
r

r3
(36)

where the test mass m1 is so small that its gravitational field can be ignored. The gravita-
tional field is conservative because

∇×
( r
r3

)
= ∇

(
1

r3

)
× r +

1

r3

(
∇× r

)
=

(
−

3r

r5

)
× r + 0 = 0

or, using indices,(
∇×

(
r/r3

))
i

= εijk∂j(xk/r
3) = εijk

(
δjk/r

3 − 3xjxk/r
5
)

= 0

The gravitational potential defined by

G = −∇φ

can be obtained from equation (36) by spotting the direct integration, giving

φ = −Gm
r

Alternatively, we may evaluate it by a line integral. Choosing r
0

=∞ gives

φ(r) = −
∫ r

∞
G(r′) · dr′ = −

∫ 1

∞
G(λr) · dλr

= (−)2

∫ 1

∞

Gm (r · r)
r3

dλ

λ2
= − Gm

r

Note: In this example, the vector field G is singular at the origin r = 0. This implies that
we have to exclude the origin, so it’s not possible to obtain the scalar potential at r by
integration along a path from the origin. Instead we integrate from infinity, which in turn
means that the gravitational potential at infinity is zero.

Note: Since F = m1G = −∇ (m1 φ), the potential energy of the mass m1 is V = m1φ.
The distinction (a convention) between potential and potential energy is a common source
of confusion.
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Electrostatics: Coulomb’s Law states that the force F (r) on a particle of charge q1 situ-
ated at r in the electric field E(r) due to a particle of charge q situated at the origin is given
(in SI units) by

F = q1E =
q1 q

4πε0

r

r3
,

where ε0 = 107/(4πc2) = 8.854 187 817 · · · × 10−12C2N−1m−2 is called the permittivity of
free space. Again the test charge q1 is taken as small, so as not to disturb the electric field.

The electrostatic potential may be obtained by integrating E = −∇φ from infinity to r,

φ =
q

4πε0r

The potential energy of a charge q1 in the electric field is V = q1φ.

Note that electrostatics and gravitation are very similar mathematically, the only real dif-
ference being that the gravitational force between two masses is always attractive, whereas
like charges repel.
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