Vector Calculus 2013/14

Vector Calculus - a résumé

These notes summarise many of the results of vector calculus derived/used in pre-Honours Vector Calculus. They are far from complete, e.g. basic line, surface and volume integrals aren't defined, for example.

Both index notation (with the $i^{\text {th }}$ Cartesian coordinate denoted by x_{i} and the $i^{\text {th }}$ basis vector by \underline{e}_{i}), and 'long-hand' notation (x, y, z and $\underline{e}_{x}, \underline{e}_{y}, \underline{e}_{z}$) are used.

Vectors

The vector \underline{a} has components a_{i} (or a_{x}, a_{y}, a_{z}):

$$
\underline{a}=\sum_{i=1}^{3} a_{i} \underline{e}_{i} \quad\left(=a_{x} \underline{e}_{x}+a_{y} \underline{e}_{y}+a_{z} \underline{e}_{z}\right)
$$

where $\left\{\underline{e}_{i}\right\}$ or $\left\{\underline{e}_{x}, \underline{e}_{y}, \underline{e}_{z}\right\}$ are a set of orthonormal basis vectors satisfying:

$$
\underline{e}_{i} \cdot \underline{e}_{j}=\delta_{i j} \quad\left(\underline{e}_{x} \cdot \underline{e}_{x}=1, \underline{e}_{x} \cdot \underline{e}_{y}=0, \text { etc }\right) .
$$

The position vector \underline{r} has components x_{i} (or x, y, z):

$$
\underline{r}=\sum_{i} x_{i} \underline{e}_{i} \quad\left(=x \underline{e}_{x}+y \underline{e}_{y}+z \underline{e}_{z}\right) .
$$

Scalar and vector fields

$$
\begin{aligned}
\phi(\underline{r}) & =\text { scalar function of } \underline{r}=\text { a scalar field } \\
\underline{a}(\underline{r}) & =\text { vector function of } \underline{r}=\text { a vector field }=\sum_{i} a_{i}(\underline{r}) \underline{e}_{i} .
\end{aligned}
$$

The scalar product of \underline{a} and \underline{b} is $\underline{a} \cdot \underline{b}=\sum_{i} a_{i} b_{i} \quad\left(=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}\right)$
The vector product of \underline{a} and \underline{b} is denoted $\underline{a} \times \underline{b}$, and defined by

$$
\underline{a} \times \underline{b} \equiv\left|\begin{array}{ccc}
\underline{e}_{1} & e_{2} & \underline{e}_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

The vector operator $\underline{\nabla}$ ('del'), defined as

$$
\underline{\nabla}=\sum_{i} \underline{e}_{i} \frac{\partial}{\partial x_{i}}=\underline{e}_{x} \frac{\partial}{\partial x}+\underline{e}_{y} \frac{\partial}{\partial y}+\underline{e}_{z} \frac{\partial}{\partial z}
$$

can operate on scalar and vector fields to give, in terms of Cartesian coordinates:

$$
\begin{aligned}
\operatorname{grad} \phi & =\underline{\nabla} \phi=\sum_{i} \underline{e}_{i} \frac{\partial \phi}{\partial x_{i}}
\end{aligned}=\underline{e}_{x} \frac{\partial \phi}{\partial x}+\underline{e}_{y} \frac{\partial \phi}{\partial y}+\underline{e}_{z} \frac{\partial \phi}{\partial z}, \sum_{i} \frac{\partial a_{i}}{\partial x_{i}}=\frac{\partial a_{x}}{\partial x}+\frac{\partial a_{y}}{\partial y}+\frac{\partial a_{z}}{\partial z} .
$$

The chain rule: If $F(\phi(\underline{r}))$ is a scalar field, then $\underline{\nabla} F(\phi)=\frac{d F(\phi)}{d \phi} \underline{\nabla} \phi(\underline{r})$
If ϕ and \underline{F} are built from two or more other fields (e.g. $\phi=\underline{a} \cdot \underline{b}, \underline{F}=\phi \underline{a}, \underline{F}=\underline{a} \times \underline{b}$) where ϕ and ψ are scalar fields, and $\underline{a}, \underline{b}$ and \underline{F} are vector fields, then the following identities are found to be useful:

$$
\begin{aligned}
\underline{\nabla}(\phi \psi) & =\phi(\underline{\nabla} \psi)+(\underline{\nabla} \phi) \psi \quad \underline{\nabla} \cdot(\underline{a} \times \underline{b})=\underline{b} \cdot(\underline{\nabla} \times \underline{a})-\underline{a} \cdot(\underline{\nabla} \times \underline{b}) \\
\underline{\nabla} \cdot(\phi \underline{a}) & =(\underline{\nabla} \phi) \cdot \underline{a}+\phi(\underline{\nabla} \cdot \underline{a}) \quad \underline{\nabla} \times(\phi \underline{a})=\phi(\underline{\nabla} \times \underline{a})+(\underline{\nabla} \phi) \times \underline{a} \\
\underline{\nabla}(\underline{a} \cdot \underline{b}) & =(\underline{a} \cdot \underline{\nabla}) \underline{b}+(\underline{b} \cdot \underline{\nabla}) \underline{a}+\underline{a} \times(\underline{\nabla} \times \underline{b})+\underline{b} \times(\underline{\nabla} \times \underline{a}) \\
\underline{\nabla} \times(\underline{a} \times \underline{b}) & =(\underline{\nabla} \cdot \underline{b}) \underline{a}+(\underline{b} \cdot \underline{\nabla}) \underline{a}-(\underline{\nabla} \cdot \underline{a}) \underline{b}-(\underline{a} \cdot \underline{\nabla}) \underline{b} .
\end{aligned}
$$

Second-order operators can be formed from $\underline{\nabla}$, such as:

$$
\begin{aligned}
\underline{\nabla} \cdot(\underline{\nabla} \phi) & =\sum_{i} \frac{\partial^{2} \phi}{\partial x_{i}^{2}} \equiv \nabla^{2} \phi & & \text { [Laplacian acting on a scalar }] \\
\underline{\nabla} \times(\underline{\nabla} \times \underline{a}) & =\underline{\nabla}(\underline{\nabla} \cdot \underline{a})-\nabla^{2} \underline{a} & & \text { [Laplacian acting on a vector }]
\end{aligned}
$$

Also

$$
\underline{\nabla} \cdot(\underline{\nabla} \times \underline{a}) \equiv 0 \quad \text { and } \quad \underline{\nabla} \times(\underline{\nabla} \phi) \equiv 0
$$

For the position vector \underline{r} we have the special results:

$$
\begin{aligned}
\underline{\nabla} \cdot \underline{r} & =3, \quad \underline{\nabla} \times \underline{r}=0, \quad \underline{\nabla} \times(\underline{c} \times \underline{r})=2 \underline{c} \\
(\underline{c} \cdot \underline{\nabla}) \underline{r} & =\underline{\nabla}(\underline{c} \cdot \underline{r})=\underline{c} \quad \text { where } \underline{c} \text { is a constant vector } \\
\underline{\nabla} f(r) & =f^{\prime}(r) \underline{r} / r \quad \text { where } r=|\underline{r}| \\
\text { e.g. } \quad \underline{\nabla} r^{n} & \left.=n r^{n-2} \underline{r} \quad \text { (because } f(r)=r^{n} \Rightarrow f^{\prime}(r)=n r^{n-1}\right)
\end{aligned}
$$

Integral Vector Calculus

The line, surface and volume integrals of these fields are related by the divergence theorem (sometimes called Gauss' theorem) and Stokes' theorem:

$$
\begin{aligned}
\int_{V}(\underline{\nabla} \cdot \underline{a}) \mathrm{d} V & =\int_{S} \underline{a} \cdot \mathrm{~d} \underline{S} \text { with } S \text { a closed surface bounding volume } V \\
\int_{S}(\underline{\nabla} \times \underline{a}) \cdot \mathrm{d} \underline{S} & =\oint_{C} \underline{a} \cdot \mathrm{~d} \underline{r} \quad \text { with } S \text { an open surface, bounded by a closed curve } C .
\end{aligned}
$$

Scalar and vector potentials

Scalar potential:

$$
\underline{\nabla} \times \underline{a}=0 \quad \Leftrightarrow \quad \exists \phi \text { such that } \underline{a}=\underline{\nabla} \phi
$$

Vector potential:

$$
\underline{\nabla} \cdot \underline{B}=0 \Leftrightarrow \underline{A} \text { such that } \underline{B}=\underline{\nabla} \times \underline{A}
$$

Orthogonal curvilinear coordinates

If the symmetry of the problem suggests a coordinate system other than Cartesian, we need to generalise the relations between div, grad, curl and ∇^{2} and the partial derivatives as given in the first part of this résumé.
For orthogonal curvilinear coordinates $\left\{u_{i}\right\}$, the unit vectors $\left\{\underline{e}_{i}\right\}$ and scale factors $\left\{h_{i}\right\}$, for all $i=1,2,3$, are defined as follows:

$$
\frac{\partial \underline{r}}{\partial u_{i}}=\underline{e}_{i} h_{i}
$$

The basic operations are given in terms of h_{i}, \underline{e}_{i} and $\frac{\partial}{\partial u_{i}}$ are as follows (with $\underline{a}=a_{i} \underline{e}_{i}$)

$$
\begin{aligned}
\underline{\nabla} \phi & =\sum_{i=1}^{3} \frac{1}{h_{i}} \frac{\partial \phi}{\partial u_{i}} \underline{e}_{i} \\
\underline{\nabla} \cdot \underline{a} & =\frac{1}{h_{1} h_{2} h_{3}}\left\{\frac{\partial}{\partial u_{1}}\left(h_{2} h_{3} a_{1}\right)+\frac{\partial}{\partial u_{2}}\left(h_{3} h_{1} a_{2}\right)+\frac{\partial}{\partial u_{3}}\left(h_{1} h_{2} a_{3}\right)\right\} \\
& =\frac{1}{h_{1} h_{2} h_{3}}\left\{\frac{\partial}{\partial u_{1}}\left(h_{2} h_{3} a_{1}\right)+\text { cyclic combinations }\right\} \\
\underline{\nabla} \times \underline{a} & =\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{lll}
h_{1} \underline{e}_{1} & h_{2} \underline{e}_{2} & h_{3} \underline{e}_{3} \\
\frac{\partial}{\partial u_{1}} & \frac{\partial}{\partial u_{2}} & \frac{\partial}{\partial u_{3}} \\
h_{1} a_{1} & h_{2} a_{2} & h_{3} a_{3}
\end{array}\right| \\
\nabla^{2} \phi & =\frac{1}{h_{1} h_{2} h_{3}}\left\{\frac{\partial}{\partial u_{1}}\left\{\frac{h_{2} h_{3}}{h_{1}} \frac{\partial \phi}{\partial u_{1}}\right\}+\frac{\partial}{\partial u_{2}}\left\{\frac{h_{3} h_{1}}{h_{2}} \frac{\partial \phi}{\partial u_{2}}\right\}+\frac{\partial}{\partial u_{3}}\left\{\frac{h_{1} h_{2}}{h_{3}} \frac{\partial \phi}{\partial u_{3}}\right\}\right\} . \\
& =\frac{1}{h_{1} h_{2} h_{3}}\left\{\frac{\partial}{\partial u_{1}}\left\{\frac{h_{2} h_{3}}{h_{1}} \frac{\partial \phi}{\partial u_{1}}\right\}+\text { cyclic combinations }\right\} .
\end{aligned}
$$

The most commonly used systems are:

1. Circular cylindrical coordinates (ρ, ϕ, z) :

$$
x=\rho \cos \phi, \quad y=\rho \sin \phi, \quad z=z, \quad \text { with } \quad h_{\rho}=1, \quad h_{\phi}=\rho, \quad h_{z}=1 .
$$

2. Spherical polar coordinates (r, θ, ϕ) :

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta \quad \text { with } \quad h_{r}=1, \quad h_{\theta}=r, \quad h_{\phi}=r \sin \theta
$$

The elements of length, area and volume may be written in terms of the scale factors.

