Vector Calculus 2013/14

Tutorial Sheet 1: Vector products, scalar fields, level surfaces, gradient

* denotes harder problems or parts of problems
* denotes hand-in questions
1.1 For vectors $\underline{a}, \underline{b}$ and \underline{c}, state whether the following are true or false:
(i) $(\underline{a} \cdot \underline{b}) \underline{a}=(\underline{a} \cdot \underline{a}) \underline{b}$
(ii) If $\underline{a} \cdot \underline{c}=\underline{b} \cdot \underline{c}$ then $\underline{a}=\underline{b}$
(iii) $(\underline{a} \times \underline{b}) \times(\underline{a} \times \underline{b})=0$
(iv) $\quad \underline{a} \times(\underline{a} \times \underline{b})=0$

Explain your answers. For those that are false, give a counterexample.
1.2 Prove the identity $\underline{a} \times(\underline{b} \times \underline{c})=(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{a} \cdot \underline{b}) \underline{c}$, and use it to deduce the identities
(i) $(\underline{a} \times \underline{b}) \times \underline{c}=(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{b} \cdot \underline{c}) \underline{a}$
(ii) $\underline{a} \times(\underline{b} \times \underline{c})+\underline{b} \times(\underline{c} \times \underline{a})+\underline{c} \times(\underline{a} \times \underline{b})=0$
(iii) $(\underline{a} \times \underline{b}) \cdot(\underline{c} \times \underline{d})=(\underline{a} \cdot \underline{c})(\underline{b} \cdot \underline{d})-(\underline{a} \cdot \underline{d})(\underline{b} \cdot \underline{c})$
(iv) $\quad(\underline{a} \times \underline{b}) \times(\underline{c} \times \underline{a})=-(\underline{a}, \underline{b}, \underline{c}) \underline{a}$
(v) $\quad(\underline{a} \times \underline{b}, \underline{b} \times \underline{c}, \underline{c} \times \underline{a})=(\underline{a}, \underline{b}, \underline{c})^{2}$

In the above equations, $(\underline{a}, \underline{b}, \underline{c})$ denotes the scalar triple product $\underline{a} \cdot(\underline{b} \times \underline{c})$. Remember the cyclic symmetry properties of $(\underline{a}, \underline{b}, \underline{c})$.
1.3 If $\phi(x, y, z)=3 x^{2} y-y^{3} z^{2}$, find $\underline{\nabla} \phi$ and its value at the point $(1,-2,1)$
1.4 Calculate $\underline{\nabla} \phi$ for each of the scalar fields
(i) $\quad \phi(x, y, z)=(x y z)^{3}$
(ii) $\quad \phi(x, y, z)=x y+y z+z x$
(iii) $\quad \phi(x, y, z)=x e^{y z}$
1.5* Describe the level surfaces (equipotentials), and calculate the gradient $\underline{\nabla} \phi$ for the following scalar fields.
[Hints: Parts (iii) \& (iv) are in 3D (not just 2D). For part (v) try considering $\cos \phi$.]
(i) $\quad \phi(\underline{r})=x_{1}+2 x_{2}-3 x_{3}$
(ii) $\quad \phi(\underline{r})=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}$
(iii) $\quad \phi(\underline{r})=x_{1}^{2}+x_{2}^{2}$
(iv) $\quad \phi(\underline{r})=\left(x_{1}^{2}+x_{2}^{2}\right)^{-1}$
(v) $\quad \phi(\underline{r})=\cos ^{-1}\left(x_{1}^{2}+x_{2}^{2}-x_{3}\right)$
1.6 Calculate $\underline{\nabla} \phi$ and describe the level surfaces for each of following scalar fields, where in each case \underline{r} is the position vector, $r=|\underline{r}|$ is the length of the position vector, and \underline{a} is a constant vector (i.e. it doesn't depend on \underline{r}.)
(i) $\phi(\underline{r})=\underline{a} \cdot \underline{r}$
(ii) $\quad \phi(\underline{r})=(\underline{a} \cdot \underline{r})^{2}$
(iii) $\quad \phi(\underline{r})=r$
(iv) $\quad \phi(\underline{r})=|\underline{r}-\underline{a}|^{2}$
1.7 Consider the complex scalar field

$$
\phi=\frac{\exp (i k r)}{4 \pi r}
$$

where r is the length of the position vector (in 3 dimensions).
Describe the level surfaces. Hence explain why the field is known as a spherical wave. What is its wavelength?
1.8 Homework problem: You should work through this problem on your own; you are not allowed to ask the tutors for help with this problem.
In this question, \underline{r} is the position vector, $r=|\underline{r}|$ is the length of the position vector, \underline{a} and \underline{b} are constant vectors, and n is an integer.
Let $\phi(\underline{r})=r^{n}$.
(i) Show that $r^{n}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{n / 2}$ and hence evaluate $\frac{\partial \phi}{\partial x_{1}}, \frac{\partial \phi}{\partial x_{2}}$ and $\frac{\partial \phi}{\partial x_{3}}$.
(ii) Hence show that $\underline{\nabla} r^{n}=n r^{n-2} \underline{r}$

For each of following scalar fields, evaluate $\frac{\partial \phi}{\partial x_{1}}, \frac{\partial \phi}{\partial x_{2}}$ and $\frac{\partial \phi}{\partial x_{3}}$, and hence obtain $\underline{\nabla} \phi$.
(iii) $\quad \phi(\underline{r})=|\underline{a} \times \underline{r}|^{2} \quad\left[\right.$ Hint: First show that $\left.|\underline{a} \times \underline{r}|^{2}=a^{2} r^{2}-(\underline{a} \cdot \underline{r})^{2}\right]$
(iv) $\quad \phi(\underline{r})=(\underline{a} \cdot \underline{r}) r^{2}$
(v) $\quad \phi(\underline{r})=(\underline{a} \cdot \underline{r})(\underline{b} \cdot \underline{r})$

Show that
(vi) $\quad \underline{\nabla}\left(|\underline{r}-\underline{a}|^{n}\right)=n|\underline{r}-\underline{a}|^{n-2}(\underline{r}-\underline{a})$

