Vector Calculus 2013/14

Tutorial Sheet 3: Div, grad, curl and the Laplacian

* denotes harder problems or parts of problems
* denotes hand-in questions
3.1 Given a vector field $\underline{a}=x y z(x-y) \underline{e}_{x}+x y z(x+y) \underline{e}_{y}+x y z^{2} \underline{e}_{z}$ show that

$$
\underline{\nabla} \cdot \underline{a}=6 x y z+z\left(x^{2}-y^{2}\right)
$$

and that

$$
\underline{\nabla} \times \underline{a}=\left[x\left(z^{2}-y^{2}-x y\right)\right] \underline{e}_{x}+\left[y\left(x^{2}-z^{2}-x y\right)\right] \underline{e}_{y}+\left[z\left(4 x y+y^{2}-x^{2}\right)\right] \underline{e}_{z}
$$

3.2 If $f(\underline{r})$ and $g(\underline{r})$ are scalar fields, and $\underline{a}(\underline{r})$ is a vector field, verify the following identities by working in Cartesian coordinates.
[In parts (i) and (iii) you should verify that the identity holds for all three Cartesian components.]
(i) $\quad \underline{\nabla}(f g)=f \underline{\nabla} g+g \underline{\nabla} f$
(ii) $\underline{\nabla} \cdot(f \underline{a})=(\underline{\nabla} f) \cdot \underline{a}+f(\underline{\nabla} \cdot \underline{a})$
(iii) $\underline{\nabla} \times(f \underline{a})=f(\underline{\nabla} \times \underline{a})+(\underline{\nabla} f) \times \underline{a}$

Repeat part (ii) using the identity $\underline{\nabla} \cdot \underline{b}=\sum_{i=1}^{3} \underline{e}_{i} \cdot \frac{\partial \underline{b}}{\partial x_{i}}$ with $\underline{b}(\underline{r}) \equiv f(\underline{r}) \underline{a}(\underline{r})$
3.3* If $g(\underline{r})$ and $h(\underline{r})$ are scalar fields, use the product rule for scalar fields to show that
(i) $\quad \nabla^{2}(g h)=g \nabla^{2} h+2(\underline{\nabla} g) \cdot(\underline{\nabla} h)+\left(\nabla^{2} g\right) h$

If \underline{r} is the position vector and $f(r)$ is a scalar field which depends only on the magnitude r of the position vector \underline{r}, use the product and chain rules to show that
(ii) $\quad \underline{\nabla} \cdot\left(r^{n} \underline{r}\right)=(n+3) r^{n}$
(iii) $\underline{\nabla} \cdot\{f(r) \underline{r}\}=3 f(r)+r f^{\prime}(r)$
(iv) $\quad \underline{\nabla} \times\left(r^{n} \underline{r}\right)=0$
(v) $\quad \underline{\nabla} \times(f(r) \underline{r})=0$
(vi) $\quad \nabla^{2} f(r)=f^{\prime \prime}(r)+2 f^{\prime}(r) / r$, and, in particular, $\nabla^{2}(1 / r)=0 \quad(r \neq 0)$

The quantity $f^{\prime}(r)$ denotes the derivative of $f(r)$ with respect to the scalar quantity r.
3.4 If \underline{a} and \underline{b} are vector fields, establish the following identities using Cartesian coordinates
(i) $\underline{\nabla} \cdot(\underline{\nabla} \times \underline{a})=0$
(ii) $\underline{\nabla} \cdot(\underline{a} \times \underline{b})=\underline{b} \cdot(\underline{\nabla} \times \underline{a})-\underline{a} \cdot(\underline{\nabla} \times \underline{b})$
(iii) $\underline{\nabla} \times(\underline{a} \times \underline{b})=\underline{a}(\underline{\nabla} \cdot \underline{b})-\underline{b}(\underline{\nabla} \cdot \underline{a})+(\underline{b} \cdot \underline{\nabla}) \underline{a}-(\underline{a} \cdot \underline{\nabla}) \underline{b}$

In parts (ii) and (iii), you should evaluate the LHS and RHS, and show they are equal. This requires quite a bit of algebra, but is conceptually simpler than the proofs given in lectures!
3.5 Evaluate the following expressions, in which \underline{a} and \underline{b} are constant vectors, \underline{r} is the position vector, $r=|\underline{r}|$ is the length of the position vector, and $\underline{\hat{r}}=\underline{r} / r$ is a unit vector in the direction of \underline{r}
(i) $\underline{\nabla} \cdot \underline{\hat{r}}$
(iv) $\underline{\nabla} \times\{\underline{a} \times(\underline{r} \times \underline{b})\}$
(ii) $\underline{\nabla} \times \underline{\hat{r}}$
(v) $\quad \underline{\nabla} \times\left\{(\underline{a} \times \underline{r}) / r^{3}\right\}$
(iii) $\underline{\nabla} \cdot\{(\underline{a} \cdot \underline{r}) \underline{b}\}$
(vi) $\quad \nabla^{2} r^{n}$
3.6 Homework problem: You should work through this problem on your own; you are not allowed to ask the tutors for help with this problem.
Evaluate the following expressions, in which \underline{a} and \underline{b} are constant vectors, \underline{r} is the position vector, and $|\underline{r}|$ is the length of the position vector.
(i) $\underline{\nabla} \times\{(\underline{a} \cdot \underline{r}) \underline{b}\}$
(iv) $\underline{\nabla}\left\{(\underline{a} \cdot \underline{r}) / r^{3}\right\}$
(ii) $\underline{\nabla} \cdot\{\underline{a} \times(\underline{r} \times \underline{b})\}$
(v) $\underline{\nabla} \times\{(\underline{a} \cdot \underline{r})(\underline{a} \times \underline{r})\}$
(iii) $\underline{\nabla} \cdot\left\{(\underline{a} \times \underline{r}) / r^{3}\right\}$
(vi) $\quad \nabla^{2}\left\{(\underline{a} \cdot \underline{r}) r^{n}\right\}$

Your answers should be written in terms of vectors, not components of vectors.

