Vector Calculus 2013/14

Tutorial Sheet 4: Physics applications of div, grad, curl and the Laplacian

* denotes harder problems or parts of problems
* denotes hand-in questions
4.1 For vector fields $\underline{a}(\underline{r})$ and $\underline{b}(\underline{r})$, show by writing out the components of $(\underline{a} \times \underline{b})$, that

$$
\frac{\partial}{\partial x_{i}}(\underline{a} \times \underline{b})=\frac{\partial \underline{a}}{\partial x_{i}} \times \underline{b}+\underline{a} \times \frac{\partial \underline{b}}{\partial x_{i}}
$$

for $i=1,2,3$.
4.2 By writing out the components, or using the following expressions

$$
\underline{\nabla}=\sum_{i=1}^{3} \underline{e}_{i} \frac{\partial}{\partial x_{i}}, \quad \underline{\nabla} \cdot \underline{a}=\sum_{i=1}^{3} \underline{e}_{i} \cdot \frac{\partial \underline{a}}{\partial x_{i}}, \quad \underline{\nabla} \times \underline{a}=\sum_{i=1}^{3} \underline{e}_{i} \times \frac{\partial \underline{a}}{\partial x_{i}},
$$

establish the following identities for vector fields $\underline{a}(\underline{r})$ and $\underline{b}(\underline{r})$:
(i) $\underline{\nabla} \times(\underline{\nabla} \times \underline{a})=\underline{\nabla}(\underline{\nabla} \cdot \underline{a})-\nabla^{2} \underline{a}$
(ii)* $\underline{\nabla}(\underline{a} \cdot \underline{b})=(\underline{a} \cdot \underline{\nabla}) \underline{b}+(\underline{b} \cdot \underline{\nabla}) \underline{a}+\underline{a} \times(\underline{\nabla} \times \underline{b})+\underline{b} \times(\underline{\nabla} \times \underline{a})$

Hint: In part (ii), start by considering $\underline{a} \times(\underline{\nabla} \times \underline{b})$.
4.3 If $\phi(\underline{r})$ and $\psi(\underline{r})$ are scalar fields, and $\underline{a}(\underline{r})$ is a vector field, show that
(i) $\underline{\nabla} \cdot(\phi \underline{\nabla} \psi-\psi \underline{\nabla} \phi)=\phi \nabla^{2} \psi-\psi \nabla^{2} \phi$
(ii) $\quad(\underline{a} \cdot \underline{\nabla}) \underline{a}=\frac{1}{2} \underline{\nabla} a^{2}-\underline{a} \times(\underline{\nabla} \times \underline{a})$, where, $a^{2} \equiv \underline{a} \cdot \underline{a}$ as usual.
(iii) $\underline{\nabla} \cdot\left\{(\underline{a} \times \underline{r}) / r^{3}\right\}=\underline{r} \cdot(\underline{\nabla} \times \underline{a}) / r^{3}$
(iv) $\quad \underline{\nabla} \times(\underline{r} \times(\underline{\nabla} \times \underline{a}))=-2 \underline{\nabla} \times \underline{a}-(\underline{r} \cdot \underline{\nabla})(\underline{\nabla} \times \underline{a})$

Hint: You may use the product rules and any of the results derived in this course thus far, including the previous questions on this tutorial sheet.
4.4 ${ }^{\boldsymbol{*}}$ The electric field at \underline{r} due to a particle of charge q at the origin is

$$
\underline{E}(\underline{r})=\frac{q}{4 \pi \epsilon_{0}} \frac{r}{r^{3}}
$$

(i) Show that, for $\underline{r} \neq 0, \underline{\nabla} \cdot \underline{E}=0$ and $\underline{\nabla} \times \underline{E}=0$
(ii) If the particle has mass m, deduce that the gravitational field $\underline{G}=\left(-G m / r^{3}\right) \underline{r}$ due to the particle satisfies $\underline{\nabla} \cdot \underline{G}=0$ and $\underline{\nabla} \times \underline{G}=0$, when $\underline{r} \neq 0$

Let $\underline{E}(\underline{r})$ be an electric field which satisfies $\underline{\nabla} \times \underline{E}=0$, but is otherwise arbitrary.
(iii) If \underline{a} is a constant vector, show that $\underline{\nabla}(\underline{a} \cdot \underline{E})=(\underline{a} \cdot \underline{\nabla}) \underline{E}$

Hint: You may use the product rules and any of the results derived in this course thus far, including the questions above.
4.5 ${ }^{\boldsymbol{*}}$ The velocity of an element of fluid at position $\underline{r}(t)$ at time t is described by a vector field $\underline{u}(\underline{r}(t), t)$. Use the chain rule to show that the total derivative of this velocity field with respect to time is

$$
\frac{d \underline{u}}{d t}=\frac{\partial \underline{u}}{\partial t}+(\underline{u} \cdot \underline{\nabla}) \underline{u}
$$

where $\partial \underline{u} / \partial t$ is the partial derivative with respect to t at fixed \underline{r}. Hence show that

$$
\frac{d \underline{u}}{d t}=\frac{\partial \underline{u}}{\partial t}+(\underline{\nabla} \times \underline{u}) \times \underline{u}+\frac{1}{2} \underline{\nabla} u^{2}
$$

Hint: For the last bit, you will need a result derived in one of the previous questions.
4.6 The condition for hydrostatic equilibrium in a fluid or gas of density (mass per unit volume) $\rho(\underline{r})$ is

$$
\rho \underline{F}=\underline{\nabla} p
$$

where $\underline{F}(\underline{r})$ is the external force per unit mass at the point with position vector \underline{r}, and $p(\underline{r})$ is the pressure at \underline{r}.
(i) Show that \underline{F} satisfies $\underline{F} \cdot(\underline{\nabla} \times \underline{F})=0$.
(ii) The density of the Earth's atmosphere close to its surface may be taken to be constant. Taking F to be the gravitational force per unit mass, obtain a differential equation for the variation of pressure with height z above the Earth's surface. Hence show that

$$
p(z)=p_{0}-\rho g z,
$$

and interpret the constant p_{0}.
4.7 Revision of planar/double integration in Cartesian and plane-polar coordinates.

Do not use plane polar coordinates in parts (i) or (ii) of the question.
(i) Use Cartesian coordinates to evaluate the integral

$$
\int_{S} x y \mathrm{~d} S
$$

where S is the first quadrant of the unit circle $x^{2}+y^{2}<1, x \geq 0, y \geq 0$, and $\mathrm{d} S$ is the (infinitesimal) element of area in the $x-y$ plane.
(ii) Use Cartesian coordinates to evaluate the area $S=\int_{S} \mathrm{~d} S$.
(iii) Repeat parts (i) and (ii) using plane polar coordinates, $x=\rho \cos \phi, y=\rho \sin \phi$.
4.8 Homework problem: You should work through this problem on your own; you are not allowed to ask the tutors for help with this problem.
Maxwell's equations for the electric field $\underline{E}(\underline{r})$ and the magnetic field $\underline{B}(\underline{r})$ in a chargeand current-free region are:

$$
\underline{\nabla} \cdot \underline{E}=0 \quad \underline{\nabla} \cdot \underline{B}=0 \quad \underline{\nabla} \times \underline{E}=-\frac{\partial \underline{B}}{\partial t} \quad \frac{1}{\mu_{0}} \underline{\nabla} \times \underline{B}=\epsilon_{0} \frac{\partial \underline{E}}{\partial t}
$$

(i) By considering $\underline{\nabla} \times(\underline{\nabla} \times \underline{E})$, use Maxwell's equations and an appropriate vector identity to show that

$$
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \underline{E}=0
$$

Hence obtain an expression for the constant c.
(ii) Find a similar equation for the magnetic field \underline{B}.

