Vector Calculus 2013/14

Tutorial Sheet 5: Line integrals

* denotes harder problems or parts of problems
* denotes hand-in questions
5.1 Evaluate the line integral

$$
\int_{C}(\underline{a} \times \underline{r}) \cdot \mathrm{d} \underline{r}
$$

where the curve C is a semicircle of unit radius in the (x, y) plane: $\left\{x^{2}+y^{2}=1 ; x \geq 0\right\}$, and \underline{a} is a constant vector. Use a parametric representation for the curve C.
5.2 A particle moves under the influence of a force $\underline{F}(\underline{r})$.
(i) Calculate the work done by evaluating the line integral

$$
\int_{C} \underline{F} \cdot \mathrm{~d} \underline{r}
$$

when $\underline{F}(\underline{r})=(y,-x, 0)$, from the point $(a, 0,0)$ to the point $(a, 0,2 \pi b)$ along (a) a circular helix between the two points, parameterised by

$$
\underline{r}=(a \cos \lambda, a \sin \lambda, b \lambda) \quad \text { where } \quad 0 \leq \lambda \leq 2 \pi
$$

(b) a straight line between the two points, parameterised by

$$
\underline{r}=(a, 0, b \lambda) .
$$

(ii) Repeat for the force $\underline{F}(\underline{r})=\underline{r}$.
[You should find the results to be the same for both paths in part(ii)]
5.3 For the vector field $\underline{F}(\underline{r})=(2 y+3) \underline{e}_{x}+x z \underline{e}_{y}+(y z-x) \underline{e}_{z}$, evaluate the line integral $\int_{C} \underline{F} \cdot \mathrm{~d} \underline{r}$ to find the work done by the force $\underline{F}(\underline{r})$ along the following paths C :
(i) $\quad\left\{x=2 t^{2}, y=t, z=t^{3}\right\}$ from $t=0$ to $t=1$
(ii) the straight lines from $(0,0,0)$ to $(0,0,1)$, then to $(0,1,1)$, and then to $(2,1,1)$
(iii) the straight line from $(0,0,0)$ to $(2,1,1)$. (Use a parametric representation.)
5.4* Evaluate the line integrals

$$
\int_{C} \underline{r} \times \mathrm{d} \underline{r} \text { and } \int_{C} \underline{r} \mathrm{~d} s
$$

from the point $(a, 0,0)$ to the point $(a, 0,2 \pi b)$ on the circular helix

$$
\underline{r}=(a \cos t, a \sin t, b t)
$$

Hint: for the 2nd part, you will need to show that $\mathrm{d} s=\sqrt{a^{2}+b^{2}} \mathrm{~d} t$.
5.5 (i) If $\underline{F}(\underline{r})=2 y \underline{e}_{x}-z \underline{e}_{y}+x \underline{e}_{z}$ show that

$$
\int_{C} \underline{F} \times \mathrm{d} \underline{r}=\left(2-\frac{\pi}{4}\right) \underline{e}_{x}+\left(\pi-\frac{1}{2}\right) \underline{e}_{y}
$$

where the integral is evaluated along the curve $x=\cos t, y=\sin t, z=2 \cos t$ from $t=0$ to $t=\pi / 2$.
(ii) If $\underline{a}(\underline{r})=(3 x+y) \underline{e}_{x}-x \underline{e}_{y}+(y-2) \underline{e}_{z}$, and $\underline{b}=2 \underline{e}_{x}-3 \underline{e}_{y}+\underline{e}_{z}$ show that

$$
\oint_{C}(\underline{a} \times \underline{b}) \times \mathrm{d} \underline{r}=4 \pi\left(7 \underline{e}_{x}+3 \underline{e}_{y}\right)
$$

where the integral is evaluated anticlockwise around a circle of radius 2 , which lies in the $x-y$ plane and is centred at the origin.
5.6 Homework problem: You should work through this problem on your own; you are not allowed to ask the tutors for help with this problem.
The magnetic field $\underline{B}(\underline{r})$ due to a long wire which lies along the x_{3} axis and carries current I is

$$
\underline{B}(\underline{r})=\frac{K}{x_{1}^{2}+x_{2}^{2}}\left[-x_{2} \underline{e}_{1}+x_{1} \underline{e}_{2}\right]
$$

where $K=\mu_{o} I / 2 \pi$ is a constant.
(i) Calculate the line integral

$$
\int_{C} \underline{B} \cdot \mathrm{~d} \underline{r}
$$

from the point $(1,0,0)$ to $(0,1,1)$ along

1. $C_{1}: x_{1}=\cos \lambda, x_{2}=\sin \lambda, x_{3}=\frac{2}{\pi} \lambda$, with $0 \leq \lambda \leq \frac{\pi}{2} \quad$ [ans: $K \pi / 2$]
2. $C_{2}: x_{1}=\cos \lambda, x_{2}=-\sin \lambda, x_{3}=\frac{2}{3 \pi} \lambda$, with $0 \leq \lambda \leq \frac{3 \pi}{2} \quad$ [ans: $-3 K \pi / 2$]
3. $C_{3}: x_{2}=x_{3}=1-x_{1}$, with $1 \geq x_{1} \geq 0$
[ans: $K \pi / 2$]
(ii) Show that in the plane polar basis $\underline{B}=\frac{K}{\rho} \underline{e}_{\phi}$
