Vector Calculus 2013/14

Tutorial Sheet 6: Surface integrals

* denotes harder problems or parts of problems
* denotes hand-in questions
6.1 More revision of planar/double integration in plane-polar coordinates.

A non-conducting annular disc of outer radius b and inner radius a lies in the $x-y$ plane, with its centre at the origin. The disc carries charge/unit area

$$
\sigma(x, y)=\lambda_{0} \frac{x^{2}(b-y)}{\left(x^{2}+y^{2}\right)^{2}}
$$

where λ_{0} is a constant. Using plane polar coordinates, find the total charge

$$
Q=\int_{S} \sigma(x, y) \mathrm{d} S
$$

on the disc. What happens to Q as $a \rightarrow 0$, with $\sigma(x, y)$ unchanged? Does this make sense physically?
6.2 If $\underline{a}=2 x^{2} y \underline{e}_{x}+x z \underline{e}_{y}-y^{3} \underline{e}_{z}$, evaluate the surface integral $\int_{S} \underline{a} \cdot \mathrm{~d} \underline{S}$ explicitly where S is the surface of the unit cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$.
Hint: Note that you need to integrate over all 6 faces of the cube.
6.3 Calculate the flux of the vector field

$$
\underline{F}(\underline{r})=\frac{\alpha \underline{r}}{\left(r^{2}+a^{2}\right)^{3 / 2}}
$$

through the closed spherical surface $r=\sqrt{3} a$
6.4 A spherical surface S of radius a centred on the origin has a parametric representation

$$
\underline{r}=a \sin \theta \cos \phi \underline{e}_{1}+a \sin \theta \sin \phi \underline{e}_{2}+a \cos \theta \underline{e}_{3}
$$

where $0 \leq \theta \leq \pi$ and $0 \leq \phi \leq 2 \pi$.
Write down an expression for the vector element of area on S, and hence evaluate the surface integrals

$$
\int_{S} \underline{A} \cdot \mathrm{~d} \underline{S} \quad \text { and } \quad \int_{S} \underline{A} \times \mathrm{d} \underline{S}
$$

on the curved surface of the spherical octant $0 \leq \theta \leq \pi / 2$ and $0 \leq \phi \leq \pi / 2$, where the vector field $\underline{A}(\underline{r})$ is defined by

$$
\underline{A}(\underline{r})=\cos \theta \cos \phi \underline{e}_{1}+\cos \theta \sin \phi \underline{e}_{2}-\sin \theta \underline{e}_{3} .
$$

6.5 The surface of a torus can be parametrised by two angles λ and μ

$$
\begin{aligned}
& x=(R+a \cos \mu) \cos \lambda \\
& y=(R+a \cos \mu) \sin \lambda \\
& z=a \sin \mu
\end{aligned}
$$

where $0 \leq \lambda<2 \pi, 0 \leq \mu<2 \pi, R$ is the distance from the centre of the tube to the centre of the torus, and a is the radius of the tube.
Calculate the surface area of the torus.
6.6 Homework problem: You should work through this problem on your own; you are not allowed to ask the tutors for help with this problem.
(i) An arbitrary point \underline{r} on the curved surface S_{C} of a right circular cylinder

$$
x^{2}+y^{2}=a^{2}, \quad 0 \leq z \leq c,
$$

may be parameterised by the two real variables ϕ and z,

$$
\underline{r}=a \cos \phi \underline{e}_{1}+a \sin \phi \underline{e}_{2}+z \underline{e}_{3} \quad\{0 \leq \phi \leq 2 \pi, 0 \leq z \leq c\} .
$$

Find an expression for the tangent vectors along (a) the lines of constant ϕ, (b) the lines of constant z. Deduce an expression for the vector element of area $\underline{d} \underline{S}$ on the curved surface, and evaluate

$$
\int_{S_{C}} \underline{r} \cdot \mathrm{~d} \underline{S}
$$

over the curved surface of the cylinder.
(ii) Show that an arbitrary point \underline{r} on the top (flat) surface S_{T} of the cylinder may be parameterised by the two real variables ρ and ϕ,

$$
\underline{r}=\rho \cos \phi \underline{e}_{1}+\rho \sin \phi \underline{e}_{2}+c \underline{e}_{3} \quad\{0 \leq \rho \leq a, 0 \leq \phi \leq 2 \pi\} .
$$

Deduce an expression for the vector element of area $\underline{d} \underline{S}$ on the top surface of the cylinder, and evaluate

$$
\int_{S_{T}} \underline{r} \cdot \mathrm{~d} \underline{S}
$$

over the top surface of the cylinder.
(iii) Repeat part (ii) for the bottom surface S_{B} of the cylinder.

Check that your vector elements of area point in the direction of the outward normals in each of parts (i), (ii) and (iii).
(iv) Verify that the sum of the surface integrals in parts (i), (ii) and (iii) is

$$
\int_{S_{C}} \underline{r} \cdot \mathrm{~d} \underline{S}+\int_{S_{T}} \underline{r} \cdot \mathrm{~d} \underline{S}+\int_{S_{B}} \underline{r} \cdot \mathrm{~d} \underline{S}=3 V
$$

where V is the volume of the cylinder.

