Vector Calculus 2013/14

Tutorial Sheet 7: Volume integrals, spherical polars, and the divergence theorem

* denotes hand-in questions
7.1 Show that the volume integral

$$
\int_{0}^{1} \mathrm{~d} x \int_{0}^{x^{2}} \mathrm{~d} y \int_{x y}^{1} 2 x^{2} z \mathrm{~d} z=\frac{28}{165}
$$

7.2 Consider the integrals

$$
I_{1}=\int_{V}(x+y+z) \mathrm{d} V, \quad I_{2}=\int_{V} z \mathrm{~d} V
$$

where the volume V is the positive octant of the unit sphere:

$$
x^{2}+y^{2}+z^{2} \leq 1, \quad x \geq 0, y \geq 0, z \geq 0
$$

(i) Explain why $I_{1}=3 I_{2}$
(ii) Show that in Cartesian coordinates

$$
I_{2}=\int_{0}^{1} \mathrm{~d} x \int_{0}^{\sqrt{1-x^{2}}} \mathrm{~d} y \int_{0}^{\sqrt{1-x^{2}-y^{2}}} z \mathrm{~d} z=\pi / 16
$$

Using spherical polar coordinates (r, θ, ϕ) :
(iii) Show that $I_{2}=\pi / 16$.
(iv) Evaluate the centre of mass vector for such an octant of uniform mass density.
7.3 Question (6.2) was: If $\underline{a}=2 x^{2} y_{\underline{e}}+x z \underline{e}_{y}-y^{3} \underline{e}_{z}$, evaluate the surface integral $\int_{S} \underline{a} \cdot \mathrm{~d} \underline{S}$ explicitly where S is the surface of the unit cube bounded by $x=0, x=1, y=0, y=$ $1, z=0, z=1$.
Hint: Note that you need to integrate over all 6 faces of the cube.
Evaluate $\underline{\nabla} \cdot \underline{a}$, and hence evaluate the surface integral using the divergence theorem.
7.4 Question (6.3) was: Calculate the flux of the vector field

$$
\underline{F}(\underline{r})=\frac{\alpha \underline{r}}{\left(r^{2}+a^{2}\right)^{3 / 2}}
$$

through the closed spherical surface $r=\sqrt{3} a$
Evaluate $\underline{\nabla} \cdot \underline{F}$, and hence evaluate the surface integral using the divergence theorem.
Hints: Use a trigonometric substitution for the resulting integral. The answer is $3 \sqrt{3} \pi \alpha / 2$.
7.5* Use the divergence theorem to evaluate the flux $\int_{S} \underline{F} \cdot \mathrm{~d} \underline{S}$ where the vector field $\underline{F}(\underline{r})=x z \underline{e}_{1}+3 x \underline{e}_{2}-2 z \underline{e}_{3}$, and
(i) $\quad S$ is the closed cylinder bounded by the surface $x^{2}+y^{2}=1$, and the planes $z=0$ and $z=3$;
(ii) $\quad S$ is the open curved cylindrical surface $x^{2}+y^{2}=1,0 \leq z \leq 3$.
7.6 Spherical polar coordinates are defined by $\underline{r}=r \sin \theta \cos \phi \underline{e}_{1}+r \sin \theta \sin \phi \underline{e}_{2}+r \cos \theta \underline{e}_{3}$
(i) Show that $\quad h_{r} \equiv\left|\frac{\partial r}{\partial r}\right|=1, \quad h_{\theta} \equiv\left|\frac{\partial r}{\partial \theta}\right|=r, \quad h_{\phi} \equiv\left|\frac{\partial r}{\partial \phi}\right|=r \sin \theta$.

The quantities h_{r}, h_{θ} and h_{ϕ} are called the scale factors for spherical polars.
(ii) Hence show that

$$
\begin{aligned}
& \underline{e}_{r} \equiv \frac{1}{h_{r}} \frac{\partial r}{\partial r}=\sin \theta \cos \phi \underline{e}_{1}+\sin \theta \sin \phi \underline{e}_{2}+\cos \theta \underline{e}_{3} \\
& \underline{e}_{\theta} \equiv \frac{1}{h_{\theta}} \frac{\partial \underline{r}}{\partial \theta}=\cos \theta \cos \phi \underline{e}_{1}+\cos \theta \sin \phi \underline{e}_{2}-\sin \theta \underline{e}_{3} \\
& \underline{e}_{\phi} \equiv \frac{1}{h_{\phi}} \frac{\partial r}{\partial \phi}=-\sin \phi \underline{e}_{1}+\cos \phi \underline{e}_{2}
\end{aligned}
$$

(iii) Show that $\underline{e}_{r}, \underline{e}_{\theta}$, and \underline{e}_{ϕ} form an orthonormal basis for spherical polars, i.e. that $\underline{e}_{r} \cdot \underline{e}_{r}=\underline{e}_{\theta} \cdot \underline{e}_{\theta}=\underline{e}_{\phi} \cdot \underline{e}_{\phi}=1$, and $\underline{e}_{r} \cdot \underline{e}_{\theta}=\underline{e}_{\theta} \cdot \underline{e}_{\phi}=\underline{e}_{\phi} \cdot \underline{e}_{r}=0$
(iv) Show that $\underline{e}_{r} \times \underline{e}_{\theta}=\underline{e}_{\phi}, \quad \underline{e}_{\theta} \times \underline{e}_{\phi}=\underline{e}_{r}, \quad \underline{e}_{\phi} \times \underline{e}_{r}=\underline{e}_{\theta}$.
(v) Hence show that the vector element of area on a sphere of radius r may be expressed as

$$
\mathrm{d} \underline{S}_{r}=h_{\theta} h_{\phi} \underline{e}_{r} \mathrm{~d} \theta \mathrm{~d} \phi=r^{2} \sin \theta \underline{e}_{r} \mathrm{~d} \theta \mathrm{~d} \phi
$$

(vi) Find similar expressions for the vector elements of area on the cone $\theta=\theta_{0}$ where θ_{0} is constant, and on the plane $\phi=\phi_{0}$, where ϕ_{0} is constant. Illustrate your results with sketches.
(vii) Show that the volume element is

$$
\mathrm{d} V=h_{r} h_{\theta} h_{\phi} \mathrm{d} r \mathrm{~d} \theta \mathrm{~d} \phi=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi
$$

7.7* Homework problem: You should work through this problem on your own; you are not allowed to ask the tutors for help with this problem.

Consider the surface integral

$$
\int_{S_{C}} \underline{r} \cdot \mathrm{~d} \underline{S}
$$

where S_{C} is that part of the surface $z=a^{2}-x^{2}-y^{2}$ (a paraboloid) for which $z \geq 0$.
(i) Verify that the surface can be parametrised as $x=a \sin \theta \cos \phi, y=a \sin \theta \sin \phi$, $z=a^{2} \cos ^{2} \theta$. What are the limits on the integrals over θ and ϕ ?
(ii) Show that

$$
\underline{r} \cdot \mathrm{~d} \underline{S}=a^{4}\left(2 \sin ^{3} \theta \cos \theta+\cos ^{3} \theta \sin \theta\right) \mathrm{d} \theta \mathrm{~d} \phi
$$

(iii) Hence show that $\int_{S_{C}} \underline{r} \cdot \mathrm{~d} \underline{S}=3 \pi a^{4} / 2$.
(iv) Let S_{B} be the circular base of the paraboloid described above, which satisfies $x^{2}+y^{2}=a^{2}$ with $z=0$. Show that $\int_{S_{B}} \underline{r} \cdot \mathrm{~d} \underline{S}=0$.
(v) Evaluate the integral

$$
\int_{V} \underline{\nabla} \cdot \underline{r} \mathrm{~d} V
$$

where V is the volume bounded by the surface S_{C} and the plane $z=0$. Compare your answer to the sum of the results for parts (iii) and (iv).

