Vector Calculus 2013/14

Tutorial Sheet 8: The continuity equation, divergence and Stokes' theorems

* denotes hand-in questions
8.1 Maxwell's first and fourth equations for the electric field $\underline{E}(\underline{r}, t)$ and the magnetic field $\underline{B}(\underline{r}, t)$ are

$$
\underline{\nabla} \cdot \underline{E}=\frac{\rho}{\epsilon_{0}} \quad \frac{1}{\mu_{0}} \underline{\nabla} \times \underline{B}=\underline{j}+\epsilon_{0} \frac{\partial \underline{E}}{\partial t}
$$

where $\rho(\underline{r}, t)$ and $\underline{j}(\underline{r}, t)$ are the electric charge density and the electric current density respectively, and ϵ_{0} and μ_{0} are constants.
By taking the divergence of the fourth equation, show that ρ and \underline{j} satisfy a continuity equation, and hence deduce that electric charge is conserved.
8.2 If the temperature at any point \underline{r} of a solid at time t is $T(\underline{r}, t)$, and if κ, ρ and c are respectively the thermal conductivity, density and specific heat of the solid (assumed constant), show, by considering the net total heat flux from a volume V bounded by a closed surface S, that

$$
\frac{\partial T}{\partial t}=\lambda \nabla^{2} T
$$

where $\lambda=\kappa / \rho c$.
Hints: The heat content of a small volume $\mathrm{d} V$, at temperature T, is $c T \rho \mathrm{~d} V$, and the heat flux density is given by Fourier's law $\underline{J}=-\kappa \underline{\nabla} T$, where $|\underline{J}|$ is the magnitude of the heat flow per unit area per unit time across an element of surface normal to \underline{J}.
8.3 If $f(\underline{r})$ is a scalar field defined in a volume V, bounded by a closed surface S, show that

$$
\int_{V}(\underline{\nabla} f) \mathrm{d} V=\int_{S} f \mathrm{~d} \underline{S}
$$

Hint: apply the divergence theorem to the vector field $\underline{A}=f(\underline{r}) \underline{c}$, where \underline{c} is an arbitrary constant vector.
8.4 (i) Evaluate the line integral

$$
\oint_{C}(\underline{\omega} \times \underline{r}) \cdot \mathrm{d} \underline{r}
$$

where the curve C is the unit circle in the (x, y) plane, and $\underline{\omega}$ is a constant angular-velocity vector. Use a parametric representation for the curve C.
(ii) Check your answer using Stokes' theorem.
8.5* Evaluate $\int_{S}(\underline{\nabla} \times \underline{F}) \cdot \mathrm{d} \underline{S}$ where S is the open hemispherical surface $x^{2}+y^{2}+z^{2}=a^{2}$, with $z \geq 0$, and

$$
\underline{F}(\underline{r})=(1-a y) \underline{e}_{1}+2 y^{2} \underline{e}_{2}+\left(x^{2}+1\right) \underline{e}_{3}
$$

(i) By direct evaluation. Take the vector element of area $d \underline{S}$ to point away from the origin.
(ii) By using the divergence theorem applied to the vector field $\underline{\nabla} \times \underline{F}$. (Recall that the divergence theorem applies to a closed surface.)
(iii) By using Stokes' theorem applied to the vector field \underline{F}.
8.6 In the study of triclinic crystals it is useful to define general linear coordinates (u, v, w), which are related to Cartesian coordinates (x, y, z) by a 3×3 matrix M, such that

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=M\left(\begin{array}{l}
u \\
v \\
w
\end{array}\right)
$$

where the elements of the matrix M are constants.
(i) Show that the infinitesimal element of volume in general linear coordinates is

$$
\mathrm{d} V=|\operatorname{det} M| \mathrm{d} u \mathrm{~d} v \mathrm{~d} w
$$

(ii) If M is an orthogonal matrix (i.e. $M^{T} M=I$, where M^{T} denotes the transpose of M, and I is the unit matrix), show that

$$
\mathrm{d} V=\mathrm{d} u \mathrm{~d} v \mathrm{~d} w
$$

What is the geometrical interpretation of this result?
8.7* Homework problem: You should work through this problem on your own; you are not allowed to ask the tutors for help with this problem.

A closed surface S encloses a volume V. Use the divergence theorem to establish that

$$
V=\frac{1}{3} \int_{S} \underline{r} \cdot \mathrm{~d} \underline{S}
$$

where \underline{r} is the position vector.
A right circular cone has height h and a base of radius a. Choose the origin to be at the apex of the cone, and the positive z axis to be the axis of symmetry of the cone, i.e. the cone is "standing" on its apex.
(i) Using cylindrical coordinates (ρ, ϕ, z) , show that a point on the curved surface, S_{C}, of the cone can be parameterised as

$$
\underline{r}=z\left(\frac{a}{h} \cos \phi \underline{e}_{x}+\frac{a}{h} \sin \phi \underline{e}_{y}+\underline{e}_{z}\right)
$$

Hence show that, on S_{C}

$$
\mathrm{d} \underline{S}=z\left(\frac{a}{h} \cos \phi \underline{e}_{x}+\frac{a}{h} \sin \phi \underline{e}_{y}-\frac{a^{2}}{h^{2}} \underline{e}_{z}\right) \mathrm{d} \phi \mathrm{~d} z
$$

(ii) Evaluate $\underline{r} \cdot \mathrm{~d} \underline{S}$ and draw a diagram to explain your answer. Evaluate $\int_{S_{C}} \underline{r} \cdot \mathrm{~d} \underline{S}$.
(iii) Obtain an expression for $\mathrm{d} \underline{S}$ on the base S_{B} of the cone. Evaluate $\int_{S_{B}} \underline{r} \cdot \mathrm{~d} \underline{S}$, and hence show that $V=\bar{\pi} a^{2} h / 3$.
(iv) Generalise your calculation to the case of a cone of height h whose (noncircular) base is a plane surface of area A.
Hints for part (iv): (a) Take the origin at the apex of the cone and the z axis perpendicular to the base, (b) the angle between the position vector and the unit normal to the curved surface is $\pi / 2$. This part takes some thought, but not much calculation.

