Vector Calculus 2013/14

Tutorial Sheet 9: The continuity equation, Stokes' theorem, scalar potentials

* denotes hand-in questions
* denotes harder problems or parts of problems
9.1 In Question (4.3), you were asked to show that $\underline{\nabla} \cdot(\phi \underline{\nabla} \psi-\psi \underline{\nabla} \phi)=\phi \nabla^{2} \psi-\psi \nabla^{2} \phi$, where $\phi(\underline{r})$ and $\psi(\underline{r})$ are scalar fields. Make sure you can still show it! If $\psi(\underline{r}, t)$ is a complex scalar field, use this result to show that

$$
\underline{\nabla} \cdot\left(\psi^{*} \underline{\nabla} \psi-\psi \underline{\nabla} \psi^{*}\right)=\psi^{*} \nabla^{2} \psi-\psi \nabla^{2} \psi^{*}
$$

The Schrödinger equation (SE) for a particle of mass m in a potential $V(\underline{r})$ is

$$
i \hbar \frac{\partial}{\partial t} \psi(\underline{r}, t)=\left\{-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\underline{r})\right\} \psi(\underline{r}, t)
$$

Write down the complex conjugate of the Schrödinger equation. We shall denote the resulting equation by (SE) ${ }^{*}$.
The equation obtained by multiplying the SE on the left by ψ^{*} is denoted by $\psi^{*}(\mathrm{SE})$. By considering $\psi^{*}(\mathrm{SE})-\psi(\mathrm{SE})^{*}$, derive the continuity equation

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\underline{\nabla} \cdot \underline{j}=0 \\
\rho=\psi^{*} \psi \quad \text { and } \quad \underline{j}=-\frac{i \hbar}{2 m}\left(\psi^{*} \underline{\nabla} \psi-\psi \underline{\nabla} \psi^{*}\right) .
\end{gathered}
$$

where
Integrate the continuity equation over a volume V, bounded by a closed surface S, and use the divergence theorem to deduce that \underline{j} is the probability-current density.
9.2 Show that the area enclosed by the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

is $\pi a b$ by
(i) evaluating $\int \mathrm{d} S$ with the parametrisation

$$
\underline{r}=a \lambda \cos \phi \underline{e}_{x}+b \lambda \sin \phi \underline{e}_{y}
$$

where $0 \leq \lambda \leq 1$ and $0 \leq \phi \leq 2 \pi$.
(ii) Using $S=\frac{1}{2} \oint_{C}(x \mathrm{~d} y-y \mathrm{~d} x)$ with the parametrisation

$$
\underline{r}=a \cos \phi \underline{e}_{x}+b \sin \phi \underline{e}_{y}
$$

where $0 \leq \phi \leq 2 \pi$.
9.3 By applying Stokes' theorem to $\underline{a} \times \underline{c}$, where $\underline{a}(\underline{r})$ is a vector field and \underline{c} is an arbitrary constant vector, show that

$$
\int_{S}(\mathrm{~d} \underline{S} \times \underline{\nabla}) \times \underline{a}=\oint_{C} \mathrm{~d} \underline{r} \times \underline{a}
$$

9.4* The vector field $\underline{a}(\underline{r})$ is given by

$$
\underline{a}=\left(3 x^{2} y z+y^{3} z+x e^{-x}\right) \underline{e}_{x}+\left(3 x y^{2} z+x^{3} z+y e^{x}\right) \underline{e}_{y}+\left(x^{3} y+y^{3} x+x y^{2} z^{2}\right) \underline{e}_{z}
$$

(i) Calculate the integral

$$
\oint_{C} \underline{a} \cdot \mathrm{~d} \underline{r}
$$

where C is the three-dimensional closed curve $O A B C D E O$ defined by successive vertices $(0,0,0),(1,0,0),(1,0,1),(1,1,1),(1,1,0),(0,1,0),(0,0,0)$.
(ii) Check your answer using Stokes' theorem.

Hints: Split the surface into two planar surfaces. The result is e/2-5/6.
9.5 A particle moves in three dimensions under the influence of a force $\underline{F}(\underline{r})=-k \underline{r}$ where k is a constant. Show that \underline{F} is conservative.
Calculate the potential energy of the particle at the point \underline{r} by evaluating the line integral

$$
U(\underline{r})=-\int_{C} \underline{F}\left(\underline{r}^{\prime}\right) \cdot \mathrm{d} \underline{r}^{\prime}
$$

along the following paths C:

1. The straight line from the origin to the point \underline{r}.
2. Three contiguous straight lines parallel to the cartesian coordinate axes: $(0,0,0)$ to $\left(x_{1}, 0,0\right)$, then $\left(x_{1}, 0,0\right)$ to $\left(x_{1}, x_{2}, 0\right)$, and finally $\left(x_{1}, x_{2}, 0\right)$ to $\left(x_{1}, x_{2}, x_{3}\right)$.

Verify that $\underline{F}(\underline{r})=-\underline{\nabla} U(\underline{r})$.
9.6 Which of the following vector fields are conservative? (Answer: (i), (ii), (v), (viii)) Find a scalar potential for those that are.
(i) $\underline{a}=\underline{c}$
(v) $\underline{a}=r \underline{c}+(\underline{c} \cdot \underline{r}) \underline{r} / r$
(ii) $\underline{a}=(\underline{c} \cdot \underline{r}) \underline{c}$
(vi) $\quad \underline{a}=r \underline{c}-(\underline{c} \cdot \underline{r}) \underline{r} / r$
(iii) $\quad \underline{a}=(\underline{c} \cdot \underline{r}) \underline{r}$
(vii) $\quad \underline{a}=\underline{c} f(r)$
(iv) $\quad \underline{a}=\underline{c} \times \underline{r}$
(viii) $\quad \underline{a}=\underline{r} f(r)$

In the above: \underline{c} is a constant vector $\& f(r)$ is an arbitrary function of $r=|\underline{r}|$. If $f(r)=r^{n}$ in (viii), for which value of n does the potential diverge at both $\underline{r}_{0}=0$ and ∞ ?
9.7* Homework problem: You should work through this problem on your own; you are not allowed to ask the tutors for help with this problem.
The vector field $\underline{a}(\underline{r})$ is defined as

$$
\underline{a}=\left(x y^{2}+2 x\right) \underline{e}_{x}+3 x^{2} y \underline{e}_{y} .
$$

(i) By evaluating the line integral explicitly, show that

$$
\oint_{C} \underline{a} \cdot \mathrm{~d} \underline{r}=\frac{b^{4}}{2}
$$

where the closed curve C lies in the $x-y$ plane and consists of the section of the x axis between the points $(0,0,0)$ and $(b, 0,0)$, the arc of the circle of radius b centred on the origin and hence passing through the points $(b, 0,0)$ and $(0, b, 0)$, and the section of the y axis between the points $(0, b, 0)$ and $(0,0,0)$.
(ii) By performing an appropriate integral over the planar surface S enclosed by the curve C, use Stokes' theorem to check your result for the line integral in part (i).

