Vector Calculus 2013/14

Tutorial Sheet 10: The vector potential, orthogonal curvilinear coordinates

- denotes hand-in questions
- \ast denotes **harder** problems or parts of problems

Since this is the last week, you are *encouraged* to ask the tutors for help with the hand-in questions, the second of which is quite short.

- 10.1 Show that $\underline{A}(\underline{r}) = 1/2$ ($\underline{B} \times \underline{r}$) is a vector potential for the *constant* magnetic field $\underline{B}(\underline{r}) = \underline{B}$. Verify that \underline{A} satisfies the gauge condition $\underline{\nabla} \cdot \underline{A} = 0$.
- 10.2[•] Show that the following vector fields $\underline{B}(\underline{r})$ are solenoidal, where \underline{c} and \underline{d} are constant vectors and n > -3.

(i)
$$\underline{B} = 3(\underline{c} \cdot \underline{r}) \underline{d} - (\underline{c} \cdot \underline{d}) \underline{r}$$
 (ii) $\underline{B} = r^n(\underline{c} \times \underline{r})$

Use the integral expression for $\underline{A}(\underline{r})$ given in lectures to show that these fields have vector potentials

(i)
$$\underline{A} = (\underline{c} \cdot \underline{r}) (\underline{d} \times \underline{r})$$
 (ii) $\underline{A} = \frac{r^n}{n+3} \left((\underline{r} \cdot \underline{c}) \underline{r} - r^2 \underline{c} \right)$

In each case, verify that the vector potentials you obtain satisfy $\underline{B} = \underline{\nabla} \times \underline{A}$.

10.3 Derivation of Maxwell's second equation from the Biot-Savart law.

The magnetic field $\underline{B}(\underline{r})$ at the point P, which lies a distance $\underline{\rho} = \underline{r} - \underline{r'}$ from the element $d\underline{r'}$ of a thin wire carrying current i, is

$$\underline{B}(\underline{r}) = \frac{\mu_0}{4\pi} \int_C \frac{i\,\mathrm{d}\underline{r}' \times (\underline{r} - \underline{r}')}{|\underline{r} - \underline{r}'|^3} = \frac{\mu_0}{4\pi} \int_C \frac{i\,\mathrm{d}\underline{r}' \times \underline{\rho}}{\rho^3}$$

where the line integral is along the curve C of the wire. For a current density $j(\underline{r}')$ in a volume V this becomes

$$\underline{B}(\underline{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\underline{j}(\underline{r}') \times \underline{\rho}}{\rho^3} \, \mathrm{d}V'$$

. . .

Verify that

$$\underline{B}(\underline{r}) = -\frac{\mu_0}{4\pi} \int_V \underline{j}(\underline{r}') \times \underline{\nabla}_{\rho} \left(\frac{1}{\rho}\right) \, \mathrm{d}V'$$

where $\underline{\nabla}_{\rho}$ denotes the gradient with respect to the vector $\underline{\rho}$.

Use the identity $\underline{\nabla} \times (f\underline{a}) = (\underline{\nabla}f) \times \underline{a} + f(\underline{\nabla} \times \underline{a})$ to verify that

$$\underline{B}(\underline{r}) = \underline{\nabla}_r \times \underline{A}(\underline{r}) \quad \text{where} \quad \underline{A}(\underline{r}) = \frac{\mu_0}{4\pi} \int_V \frac{\underline{j}(\underline{r}')}{|\underline{r} - \underline{r}'|} \, \mathrm{d}V'$$

is called the magnetic vector potential for the magnetic field B.

[*Hint*: $\underline{\nabla}_r = \underline{\nabla}_{\rho}$ because \underline{r}' is constant when taking derivatives at the point \underline{r} .] Hence show that $\underline{\nabla} \cdot \underline{B} = 0$, which is Maxwell's second equation of electromagnetism.

10.4 Show that the scale factors for circular cylindrical coordinates (ρ, ϕ, z) are

$$h_{\rho} = 1 \qquad h_{\phi} = \rho \qquad h_z = 1$$

Write down expressions for $\underline{\nabla}f$, $\underline{\nabla} \cdot \underline{a}$, $\underline{\nabla} \times \underline{a}$ and $\nabla^2 f$ in circular cylindrical coordinates. Evaluate the curl of each the following vector fields

(i) $\underline{a} = \underline{e}_{\phi}$ (ii) $\underline{a} = \rho \underline{e}_{\phi}$ (iii) $\underline{a} = \frac{1}{\rho} \underline{e}_{\phi}$

Note that each of the fields \underline{a} has a non-zero circulation around the z axis, but this does not imply that $\underline{\nabla} \times \underline{a} \neq 0$.

10.5 Parabolic cylindrical coordinates (u, v, w) are defined by

$$x = uv$$
, $y = \frac{1}{2}(v^2 - u^2)$, $z = w$

where (x, y, z) are Cartesian coordinates. Find the scale factors h_u , h_v and h_w . Hence find expressions for the curvilinear basis vectors $\{\underline{e}_u, \underline{e}_v, \underline{e}_w\}$ in terms of $\underline{e}_x, \underline{e}_y$ and \underline{e}_z , and show that they are mutually orthogonal.

The vector field $\underline{a}(\underline{r})$ has components $(a_u = v, a_v = -u, a_w = 0)$ in the basis $\{\underline{e}_u, \underline{e}_v, \underline{e}_w\}$, $\underline{a}(\underline{r}) = v \underline{e}_u - u \underline{e}_v$

Show that \underline{a} is solenoidal.

10.6 Do Question (7.6) on Sheet 7 (if you haven't already done it).

10.7 Physics applications of spherical polars – in supernatural units! The electrostatic potential $\Phi(\underline{r})$ due to an electric dipole at the origin is given in spherical polars by

$$\Phi(\underline{r}) = \frac{\cos\theta}{r^2},$$

where r is the length of the position vector \underline{r} . Show that, for $r \neq 0$,

$$abla^2 \Phi = 0$$

The wavefunction $\psi(\underline{r})$ of a three-dimensional quantum harmonic oscillator in its ground state is given in spherical polars by

$$\psi(\underline{r}) = \exp\left(-r^2/2\right)$$
.

Show that ψ satisfies Schrödinger's equation

$$-\nabla^2 \psi + r^2 \psi = 2E_0 \psi,$$

and thus determine the value of the ground-state energy E_0 in supernatural units.

10.8* Your Easter treat! A vector field \underline{A} has components in spherical polar coordinates

$$A_r = r^2 \cos^2 \theta \sin \theta \cos \phi$$
, $A_\theta = -r^2 \cos \theta \sin^2 \theta \cos \phi$, $A_\phi = 0$.

Show that

(i)
$$\underline{\nabla} \cdot \underline{A} = r \sin \theta \cos \phi$$

(ii)
$$\underline{B} = \underline{\nabla} \times \underline{A}$$
 has components
 $B_r = -r \sin \theta \cos \theta \sin \phi$, $B_\theta = -r \cos^2 \theta \sin \phi$, $B_\phi = -r \cos \theta \cos \phi$.
(iii) $\nabla^2 A = 0$

Find the components of \underline{A} in cartesian coordinates, and comment on the suitability of spherical polars for this problem.