Vector Calculus 2013/14

Tutorial Sheet 10: The vector potential, orthogonal curvilinear coordinates

* denotes hand-in questions
* denotes harder problems or parts of problems

Since this is the last week, you are encouraged to ask the tutors for help with the hand-in questions, the second of which is quite short.
10.1 Show that $A(\underline{r})=1 / 2(\underline{B} \times \underline{r})$ is a vector potential for the constant magnetic field $\underline{B}(\underline{r})=\underline{B}$. Verify that \underline{A} satisfies the gauge condition $\underline{\nabla} \cdot \underline{A}=0$.
10.2* Show that the following vector fields $\underline{B}(\underline{r})$ are solenoidal, where \underline{c} and \underline{d} are constant vectors and $n>-3$.
(i) $\underline{B}=3(\underline{c} \cdot \underline{r}) \underline{d}-(\underline{c} \cdot \underline{d}) \underline{r}$
(ii) $\underline{B}=r^{n}(\underline{c} \times \underline{r})$

Use the integral expression for $\underline{A}(\underline{r})$ given in lectures to show that these fields have vector potentials
(i) $\underline{A}=(\underline{c} \cdot \underline{r})(\underline{d} \times \underline{r})$
(ii) $\underline{A}=\frac{r^{n}}{n+3}\left((\underline{r} \cdot \underline{c}) \underline{r}-r^{2} \underline{c}\right)$

In each case, verify that the vector potentials you obtain satisfy $\underline{B}=\underline{\nabla} \times \underline{A}$.
10.3 Derivation of Maxwell's second equation from the Biot-Savart law. The magnetic field $\underline{B}(\underline{r})$ at the point P, which lies a distance $\underline{\rho}=\underline{r}-\underline{r}^{\prime}$ from the element $\mathrm{d} \underline{r}^{\prime}$ of a thin wire carrying current i, is

$$
\underline{B}(\underline{r})=\frac{\mu_{0}}{4 \pi} \int_{C} \frac{i \mathrm{~d} \underline{r^{\prime}} \times\left(\underline{r}-\underline{r}^{\prime}\right)}{\left|\underline{r}-\underline{r}^{\prime}\right|^{3}}=\frac{\mu_{0}}{4 \pi} \int_{C} \frac{i \mathrm{~d} \underline{r^{\prime}} \times \underline{\rho}}{\rho^{3}}
$$

where the line integral is along the curve C of the wire.
For a current density $\underline{j}\left(\underline{r}^{\prime}\right)$ in a volume V this becomes

$$
\underline{B}(\underline{r})=\frac{\mu_{0}}{4 \pi} \int_{V} \frac{\underline{j}\left(r^{\prime}\right) \times \underline{\rho}}{\rho^{3}} \mathrm{~d} V^{\prime}
$$

Verify that

$$
\underline{B}(\underline{r})=-\frac{\mu_{0}}{4 \pi} \int_{V} \underline{j}\left(\underline{r}^{\prime}\right) \times \underline{\nabla}_{\rho}\left(\frac{1}{\rho}\right) \mathrm{d} V^{\prime}
$$

where $\underline{\nabla}_{\rho}$ denotes the gradient with respect to the vector $\underline{\rho}$.
Use the identity $\underline{\nabla} \times(\underline{f a})=(\underline{\nabla} f) \times \underline{a}+f(\underline{\nabla} \times \underline{a})$ to verify that

$$
\underline{B}(\underline{r})=\underline{\nabla}_{r} \times \underline{A}(\underline{r}) \quad \text { where } \quad \underline{A}(\underline{r})=\frac{\mu_{0}}{4 \pi} \int_{V} \frac{\underline{j}\left(\underline{r}^{\prime}\right)}{\left|\underline{r}-\underline{r}^{\prime}\right|} \mathrm{d} V^{\prime}
$$

is called the magnetic vector potential for the magnetic field \underline{B}.
[Hint: $\underline{\nabla}_{r}=\underline{\nabla}_{\rho}$ because \underline{r}^{\prime} is constant when taking derivatives at the point \underline{r}.]
Hence show that $\underline{\nabla} \cdot \underline{B}=0$, which is Maxwell's second equation of electromagnetism.
10.4 Show that the scale factors for circular cylindrical coordinates (ρ, ϕ, z) are

$$
h_{\rho}=1 \quad h_{\phi}=\rho \quad h_{z}=1
$$

Write down expressions for $\underline{\nabla} f, \underline{\nabla} \cdot \underline{a}, \underline{\nabla} \times \underline{a}$ and $\nabla^{2} f$ in circular cylindrical coordinates. Evaluate the curl of each the following vector fields
(i) $\quad \underline{a}=\underline{e}_{\phi}$
(ii) $\quad \underline{a}=\rho \underline{e}_{\phi}$
(iii) $\quad \underline{a}=\frac{1}{\rho} \underline{e}_{\phi}$

Note that each of the fields \underline{a} has a non-zero circulation around the z axis, but this does not imply that $\underline{\nabla} \times \underline{a} \neq 0$.
10.5 Parabolic cylindrical coordinates (u, v, w) are defined by

$$
x=u v, \quad y=\frac{1}{2}\left(v^{2}-u^{2}\right), \quad z=w
$$

where (x, y, z) are Cartesian coordinates. Find the scale factors h_{u}, h_{v} and h_{w}. Hence find expressions for the curvilinear basis vectors $\left\{\underline{e}_{u}, \underline{e}_{v}, \underline{e}_{w}\right\}$ in terms of $\underline{e}_{x}, \underline{e}_{y}$ and \underline{e}_{z}, and show that they are mutually orthogonal.
The vector field $\underline{a}(\underline{r})$ has components $\left(a_{u}=v, a_{v}=-u, a_{w}=0\right)$ in the basis $\left\{\underline{e}_{u}, \underline{e}_{v}, \underline{e}_{w}\right\}$,

$$
\underline{a}(\underline{r})=v \underline{e}_{u}-u \underline{e}_{v}
$$

Show that \underline{a} is solenoidal.
10.6 Do Question (7.6) on Sheet 7 (if you haven't already done it).
10.7 ${ }^{\boldsymbol{\alpha}}$ Physics applications of spherical polars - in supernatural units!

The electrostatic potential $\Phi(\underline{r})$ due to an electric dipole at the origin is given in spherical polars by

$$
\Phi(\underline{r})=\frac{\cos \theta}{r^{2}}
$$

where r is the length of the position vector \underline{r}. Show that, for $r \neq 0$,

$$
\nabla^{2} \Phi=0
$$

The wavefunction $\psi(\underline{r})$ of a three-dimensional quantum harmonic oscillator in its ground state is given in spherical polars by

$$
\psi(\underline{r})=\exp \left(-r^{2} / 2\right)
$$

Show that ψ satisfies Schrödinger's equation

$$
-\nabla^{2} \psi+r^{2} \psi=2 E_{0} \psi
$$

and thus determine the value of the ground-state energy E_{0} in supernatural units.
10.8* Your Easter treat! A vector field \underline{A} has components in spherical polar coordinates

$$
A_{r}=r^{2} \cos ^{2} \theta \sin \theta \cos \phi, \quad A_{\theta}=-r^{2} \cos \theta \sin ^{2} \theta \cos \phi, \quad A_{\phi}=0
$$

Show that
(i) $\underline{\nabla} \cdot \underline{A}=r \sin \theta \cos \phi$
(ii) $\underline{B}=\underline{\nabla} \times \underline{A}$ has components

$$
B_{r}=-r \sin \theta \cos \theta \sin \phi, \quad B_{\theta}=-r \cos ^{2} \theta \sin \phi, \quad B_{\phi}=-r \cos \theta \cos \phi
$$

(iii) $\quad \nabla^{2} \underline{A}=0$

Find the components of \underline{A} in cartesian coordinates, and comment on the suitability of spherical polars for this problem.

