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I. PARAMETERS USED IN OUR MODEL

Growth rate. We assume that the growth rate of
genotype m depends on the drug concentration c as
φm(c) = f(c/cmic

m ), where cmic
m denotes the minimal in-

hibitory concentration (MIC; the drug concentration at
which genotype m ceases to grow), and f(x) is a function
which is the same for all genotypes and reads

f(x) = max {0, 1− xκ} . (I.1)

κ > 0 being some positive constant. The form (I.1) is
chosen to approximate the sigmoidal function obtained
by fitting to experimental data (c.f. Eqs. (1) and (2) in
Ref. [1])

f(x) = 1− 2
xκ

1 + xκ
, (I.2)

where xκ/(1+xκ) is the Hill function. The Hill coefficient
κ has been determined experimentally to be in the range
κ = 0.5 . . . 2.5 for different antibiotics [1]. In our paper
we assume an integer value κ = 2 which is consistent
with experimental data and also makes the numerical
evaluation of Eq. (I.1) highly efficient in our simulations.

Death rate d. The role of death in our model is to
ensure that the population continues to turn over in the
steady state. In the absence of death, a static state would
be reached in which the environment would be completely
filled by bacteria, i.e., Ni = K for every compartment i,
no reproduction would occur and thus no further evolu-
tion would be possible. Although we try to avoid this
in our simulations, such a static state is not necessarily
unrealistic in a laboratory setting where, for example, a
bacterial colony grows until the available nutrients and
space are exhausted. In the natural environment, how-
ever, cells are likely to be removed at a non-zero rate,
either by being washed out by flow (e.g. for gut bacte-
ria), by being killed by the immune system (or by phage
in the case of bacteria), or by being poisoned by their own
waste products. In our simulations, we set the death rate
d = 0.1; this is large enough to provide significant popu-
lation turnover (and hence evolution), but small enough
to keep the concentration of bacteria close to the maxi-
mal environmental capacity K.

Mechanism of drug action It is important to note that
in our model, it is the growth rate rather than the death
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rate which is dependent on the drug concentration – the
drug does not kill the cells directly but simply prevents
their reproduction. Our results are therefore valid for
cytostatic, rather than cytocidal, drugs. We have, how-
ever, checked that most of the conclusions of the paper
are valid also for cytocidal drugs, for which the death
rate increases with the drug concentration.

Number of habitats L and carrying capacity K. We
aimed to choose values of L and K in as close corre-
spondance as possible with the recent experiments of
Zhang et al. [3], while remaining within the limits of
computational feasibility. In Zhang et al.’s experiments,
Escherichia coli bacteria evolve in a microfluidic device
containing many microhabitats, exposed to an antibiotic
gradient [3]. In this experiment, 1200 hexagonal wells
are arranged into a 2d hexagonal lattice. Each well has
a volume of about 106µm3 and is connected to six other
wells by narrow channels of length 200µm and having
a cross-section of 100µm2. Assuming that the maximal
density of bacteria growing on LB broth used in this ex-
periment is ρ ≈ 109 cells/ml, we conclude that each well
has a carrying capacity of about 1000 cells. In our model,
for conceptual and computational simplicity, we use in-
stead a linear array of microhabitats, with the number
of habitats L between 100 and 500, and, in the inter-
ests of computational speed, we use a carrying capacity
K = 100 which is lower by about one order of magnitude
than in the experiments of Zhang et al..

Migration rate. We assume that the rate of migration
b = 0.1 per cell is small in comparison to the maximal
growth rate φ = 1. As well as simplifying our calculations
of the fixation probability (since each compartment can
be treated as isolated), this also represents the case in
which compartments are connected by narrow channels,
as in the microfluidic experiments of Zhang et al. [3].
The characteristic timescale of migration tmigr in such
an experiment can be deduced as follows. Assuming that
each microhabitat has linear size l and is connected to its
neighbouring microhabitat by a channel of width w (we
neglect the length of the channel), tmigr ∼ (l/w)× l2/D,
where D is the effective cell diffusion rate. In the experi-
ments of Ref. [3] we estimate that l = 200µm, w = 10µm
and D = 100–1000µm2/s (typical values for E. coli), so
that tmigr ∼ 103–104s. Since the typical reproduction
time of E. coli in LB medium is trep ∼ 103s, we obtain
b = trep/tmigr = 0.1–1.

Mutation probability µ. We assume that the probabil-
ity µ to mutate into genotypes m±1 during replication is
small enough so that at most one mutant arises in a com-
pletely filled environment, per cell generation: µKL ≤ 1.
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For wild-type strains of the bacterium E. coli, the muta-
tion probability is typically µ ≈ 10−9 per cell per genera-
tion REFERENCE?, so that this condition would imply
a total population KL of < 109 cells. In our simulations
the maximal population KL lies in the range 104 to 105

cells. To ensure that our simulations are computation-
ally feasible, while remaining consistent with the condi-
tion µKL ≤ 1, we choose mutation rates in the range
µ = 5× 10−6 to µ = 10−4.

Length of mutational pathways and MIC values. Our
choices of M = 6 (corresponding to 5 mutated geno-
types along the pathway to resistance) and of MIC values
cmic
m = 4m (which, for M = 6, spans three orders of mag-
nitude between wild-type and full resistance) are inspired
by two sources. In Ref. [2], Weinreich et al show that 5
different single-nucleotide substitutions (SNPs) increase
the resistance of E. coli to the antibiotic cefotaxime by
a factor of 105, from cmic = 0.063µg/ml to 4100µg/ml
(∼ 4 orders of magnitude), and that the evolution of this
resistance follows typically only one or two pathways in
genotype space. Furthermore, in Ref. [3], Zhang et al
found four SNPs in evolved strains for which resistance
to the antibiotic ciprofloxacin was increased by a factor
∼ 200 (∼ 2 orders of magnitude).

II. MONTE CARLO SIMULATIONS

Our simulations use a simple but computationally ef-
ficient algorithm which chooses an individual cell at ran-
dom, calculates transition rates for each of the possible
events that may happen to that cell (i.e. migration, death
and replication, possibly accompanied by mutation), and
executes one of these processes with probability propor-
tional to its associated transition rate. More specifically
each step of the simulation consists of the following:

• draw a random number i = 1, . . . , Ntot in order to
choose a cell from the Ntot cells in the system. We
denote by j and m the position and the genotype,
respectively, of this cell.

• calculate the rates Rmigr = b, Rdeath = d and
Rgrowth = φm(cj)(1−Nj/K), at which the cell may
migrate to a neighboring microhabitat, die or repli-
cate.

• draw a random number r ∈ [0 . . . Rmax), where
Rmax is greater than or equal to the maximal value
of Rmigr +Rdeath +Rgrowth which may be ever en-
countered in the simulation. In our simulations we
use Rmax = 1.2.

• execute migration if r < Rmigr, death if Rmigr ≤
r < Rmigr + Rdeath and replication if Rmigr +
Rdeath ≤ r < Rmigr + Rdeath + Rgrowth (for repli-
cation see below). In the case that r ≥ Rmigr +
Rdeath +Rgrowth, execute none of these processes.

• if executing a replication step, draw an additional
random number s ∈ [0 . . . 1). If s < µ/2, add to the
system one new cell of genotype m + 1. If µ/2 <
s < µ, instead add a new cell of genotype m − 1.
Otherwise, add a new cell of genotype m.

• update the simulation time t→ t+∆t, where ∆t =
1/(NtotRmax).

This method works much faster for our model than the
standard Gillespie algorithm [4]. This is because few
calculations are required to iterate each step and, since
the total rate 0.2 ≤ Rgrowth + Rmigr + Rdeath ≤ 1.2
is bounded both from above and below, the fraction
of steps in which an event happens (i.e. we obtain
r < Rmigr +Rdeath +Rgrowth) is high (greater than 25%).
This algorithm exactly simulates our stochastic model,
the only exception being that distribution of times be-
tween events is not a continuous exponential function (as
in the Gillespie algorithm) but is discretized (in steps
of ∆t = 1/(NtotRmax)), with the correct mean value.
This is not important on the timescales considered in this
work, which are very long compared to the time between
simulation events.

III. TIME TO FIXATION IN THE UNIFORM
ENVIRONMENT

Here, we discuss the calculation of the time to fixation
(which we denote Tfix) of genotype m+ 1 in the uniform
environment, in the case where each genotype along the
pathway to resistance is fitter than the preceding one
(MIC increases with m). For notational simplicity, in
what follows we replace the genotype labels m and m+1
with A and B respectively.

Since the drug is uniformly distributed, the fitness dif-
ference φB − φA > 0 between genotypes A and B is ev-
erywhere the same. As for the heterogeneous environ-
ment (see main text), we assume strong selection – i.e.
φB−φA � 1/K. We suppose that the system is initially
populated by genotype A; the steady-state population
N∗A = K(1−d/φA) is the same in each microhabitat. We
assume that genotype B takes over the population in two
stages: it first emerges and fixes locally in one of the Lmi-
crohabitats, and then spreads out from this microhabitat
to take over the entire population. The timescale for local
emergence and fixation in a microhabitat anywhere in the
system is given by Tloc = [(µd/2)(N∗AL)(φB−φA)/φB ]−1

(this is analogous to Eq.(2) from the main text, assuming
uniformity over the microhabitat).

To compute the timescale over which genotype B then
spreads as an “invasion wave” across the whole system, we
resort to a continuous space approximation (as in Eq.(1)
of the main text), modelling the system by two coupled
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Fisher-KPP equations:

∂tNA =
b

2
∂xxNA + φANA

(
1− Ntot

K

)
− dNA,(III.1)

∂tNB =
b

2
∂xxNB + φBNB

(
1− Ntot

K

)
− dNB ,(III.2)

where Ntot = NA + NB . To calculate the velocity with
which genotype B invades the population of genotype A,
we proceed along standard lines [6]; we insert an asymp-
totic solution NB(x, t) = exp(−λ(x− vt)) (note that we
assume genotype B invades from the left) and the steady-
state solution for NA(x, t) = N∗A into Eq. (III.2), and lin-
earise the resulting equation. This leads to the relation

b

2
λ2 − λv + d

(
φB
φA
− 1

)
= 0. (III.3)

The smallest value of v for which Eq. (III.3) has a real,
positive solution λ > 0 is

v =

(
2bd(φB − φA)

φA

)1/2

. (III.4)

Eq. (III.4) gives the velocity of the invasion wave of
genotype B. This allows us to determine the timescale
Tprop = L/v over which the better adapted genotype B
spreads to take over the entire population.

The time Tfix for genotype B to fix in the entire pop-
ulation depends critically on the relative magnitudes of
Tloc and Tprop. If the invasion wave propagates rapidly
(Tprop � Tloc), Tloc determines the time to global fixa-
tion and we have

Tfix ∝ (φB − φA)−1. (III.5)

In this case the fitter genotype B, once established lo-
cally, spreads quickly to take over the population; there
is then a waiting time before an even fitter mutant has a
chance to arise and in turn invade the population. Evolu-
tion of resistance thus proceeds in a sequence of distinct
steps, each corresponding to the emergence and spread
of a separate mutant. The condition Tprop � Tloc places
a limit on the mutation rate for this scenario to hold:

µ� µ0 =
φB
L2N∗A

(
8b

dφA(φB − φA)

)1/2

. (III.6)

If, on the other hand, the time of propagation of the in-
vasion wave is equal to or longer than the typical time of
local fixation, a different scenario holds. This is relevant
for higher mutation rates µ � µ0 (but still assuming a
low mutation probability per generation µKL ≤ 1). In
this case, new, fitter mutants can arise and fix locally
before the preceding mutant has taken over the entire
population. This produces a population with a “shell-
like” structure: genotype m + 1 (= B) emerges inside
the invasion wave of genotype m (= A) as it spreads
in both directions; this wave of genotype m is itself en-
closed within another spreading wave of genotype m− 1,

etc. To compute the time to fixation for genotype m+ 1
(= B) within the spreading wave of genotype m (= A),
we need to take account of the fact that the population
size of genotype A increases in time as its wave spreads:
the total population grows as N∗AvAt, where vA is the
velocity at which genotype A = m spreads in the pop-
ulation of the preceding, less fit, genotype m − 1 (or in
an empty environment if m = 1). The rate at which
mutants of genotype B = m + 1 fix is then given by
Ω(t) = (µd/2)(N∗AvAt)(φB − φA)/φB (c.f. Eq. (2) in the
main text and the derivation of Tloc earlier in this sec-
tion; the term (φB − φA)/φB is the fixation probability
of genotype B in the population of A). Since Ω(t) ∝ t
increases with time, the fixation of genotype B cannot
be treated as a Poisson process; the distribution of times
to fixation is not exponential but is rather given by

P (t) = Ω(t)e−
∫ t
0

Ω(t′)dt′ = ωte−ωt
2/2, (III.7)

where we have introduced ω = (µd/2)N∗AvA(φB −
φA)/φB . The average time to fixation of B is then

Tfix =

∫ ∞
0

P (t)tdt =
√

2π/ω

∝ v−1/2
A (φB − φA)−1/2. (III.8)

To summarize, for the low mutation rates µ < (KL)−1

considered in this work, the time Tfix for genotype m +
1 to take over the population of genotype m scales as
Tfix ∝ (φm+1 − φm)−γ , where the value of the exponent
γ depends on the mutation rate. For ultra-low mutation
rates µ < µ0 (see Eq. (III.6)), γ = 1, while for more
frequent mutations (for which µ0 < µ < (KL)−1), γ =
1/2. Since in our model the fitness difference φm+1−φm
becomes smaller as m grows, Tfix increases with m and
hence, as long as the strong selection approximation still
holds (see main text), the time to evolve better adapted
mutants increases with the number of mutations.

IV. FIXATION TIME FOR NON-UNIFORM
DRUG CONCENTRATION, FOR SPECIFIC

MODEL ASSUMPTIONS

For the specific choices of drug concentration profile
and MIC values used in our model, we can calculate ex-
plicitly the time Tmut

m+1 for genotype m + 1 to establish
in the quasi-stationary population of genotype m, in the
case of non-uniform drug concentration. This requires us
to evaluate the integral of Eq. (2) in the main text. In our
simulations, we assume that the drug concentration in-
creases exponentially with x as c(x) = eαx− 1, the MICs
increase exponentially with m as cmic

m = 4m−1, and the
growth rate is a function of c/cmic

m , i.e. φm = f(c/cmicm ).
Substituting into Eq. (2) of the main text the result

N∗m(x) = K[1 − d/φm(c(x))] (from the main text) and
φm(c) = f(c/cmic

m ), noting that φm+1(c) ≈ 1 for c < cmic
m

and changing the integration variable to z = c(x)/cmic
m =
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(eαx/L − 1)/4m−1, gives

Tmut
m+1 ≈

2α

µdKL

[∫ z(x∗m)

z(x∗m−1)

dz
(f(z)− d)(1− f(z))

(z + 4m−1)f(z)

]−1

.

(IV.1)
Here, z(x∗m) = (eαx

∗
m − 1)/4m−1. The positions

x∗m of the stationary fronts are given by x∗m =

(1/α) ln(cmic
m

√
(1− d) + 1) (see main text), which, for

our choice of cmic
m and for large m, becomes x∗m ≈

(1/α)(m− 1) ln(4
√

1− d).
The limits of the integral in Eq. (IV.1) are therefore

z(x∗m) =
√

1− d and z(x∗m−1) ≈
√

1− d/4. Inserting
these limits, we see that Tmut

m+1 becomes independent of
m for m� 1:

Tmut := Tmut
m+1 ≈

2α

µdKL

[∫ √1−d

√
1−d/4

dz
(f(z)− d)(1− f(z))

zf(z)

]−1

.

(IV.2)
This result holds independently of the details of the
growth rate (fitness) function φm, as long as φm is a
function of c/cmic

m .
For the specific choice of φm(c/cmic

m ) used in our sim-
ulations (see main text), we have φm(z) = 1 − z2, and
the integral reads

∫√1−d√
1−d/4 dz z(1− d− z

2)/(1− z2); this
yields

Tmut =
α

µdKL

(
(1− d)

15

16
+ d ln(16d/15)

)
(IV.3)

≈ α

µdKL
(1− d+ d ln d) (IV.4)

Since Tmut is independent of m, the average time to re-
sistance τ̄ , as specified in Eq. (3) of the main text, scales
linearly with M as long as the expansion of the popu-
lation is not limited by the boundaries of the system.
If the population reaches a constraining boundary before
full resistance has emerged, subsequent mutants will have
only a very small fitness advantage: the resulting neutral
competition greatly slows the evolution of full resistance.

V. SCALING WITH PATHWAY LENGTH, FOR
FIXED MAXIMAL FITNESS

In Fig. 3 of the main text, we present results for the
scaling of the time to resistance with the length M of
the mutational pathway. Those results were obtained
assuming, as in the rest of the main text, that the MIC
of genotype m is given by cmic

m = 4m−1. In that scenario,
as the pathway length increases, the MIC of the most
resistant genotype increases as cmic

M = 4M−1. Here, we
investigate the aternative case, where we vary the number

of intermediate genotypes, keeping fixed the fitness of
the most resistant genotype: i.e. change M keeping cmic

M
fixed. We show that the main results of Fig. 3 in the
main text remain valid in this alternative scenario.
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Figure V.1. Average time to full resistance τ̄ in dependence
on the mutational pathway lengthM , determined numerically
for fixed maximum resistance cmic

M = 45, plotted on a linear
(left) and log-log scale (right). Compared are homogeneous
(triangles) and heterogeneous (α = 0.07, pluses) drug distri-
bution. The blue line shows a linear fit. We have in both
cases L = 100,K = 100, µ = 10−4. In fact, the time τ grows
linearly for heterogeneous drug distribution as predicted by
the theory.

Fig. V.1 shows the results of simulations in which we
fix cmic1 = 1 and cmicM = 45 and set the resistance of in-
termediate genotypes according to cmic

m = 45(m−1)/(M−1).
Plotting the average time to resistance as a function of
the lengthM of the mutational pathway, we obtain qual-
itatively similar behaviour to that shown in Fig. 3 of the
main text: for short pathways, resistance evolves faster
in the case of uniform drug but for longer pathways, evo-
lution is much faster in the non-uniform case.

From a theoretical point of view, Eq. (3) of the main
text remains valid (for the non-uniform case); as in the
main text, successive population waves are of the same
shape but now their positions x∗m are no longer equidis-
tant. The contributions Twave

m are then different for dif-
ferent m, but the sum

M−1∑
m=1

Twave
m =

M−1∑
m=1

(x∗m − x∗m−1)/v = x∗M/v (V.1)

is independent of M since fixed cmicM implies fixed x∗M .
The contributions Tmut

m are also in principle different for
different m. However, because the evolution of the next
genotype happens almost exclusively close to the leading
edge of the stationary front, in practice Tmut

m remains
independent of m. We therefore expect linear scaling of
τ̄ with M , as is indeed apparent in Fig. V.1 for the non-
uniform drug concentration.
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