
Section 5: The saddle-point method a.k.a. ‘method of steepest descents’

Laplace’s method and the method of stationary phase are just two instances of a general
procedure known as the saddle-point method. Here we are concerned with an integral in the
complex plane of the form

I(N) =
∫ b

a
g(z)eNf(z) dz for N � 0 (1)

where f is now an analytic complex function.

We expect the integral to be dominated by the highest stationary points of f . To argue this
we combine the arguments for Laplace’s method and stationary phase i.e. if f = u + iv we
expect integral to be dominated by points where u is maximised and also we require that v
is stationary so that the oscillating contributions do not cancel. Thus we require f ′(z) = 0.

Actually the only extrema possible for f or Re(f) are saddle points. To see this recall that
for f = u+iv the Cauchy-Riemann conditions imply that both u, v satisfy Laplace’s equation
i.e.

∂2u

∂x2
+

∂2u

∂y2
= 0

Thus at a stationary point if, for example,
∂2u

∂x2
> 0 then

∂2u

∂y2
< 0

We expect the integral to be dominated by the highest saddle point. Say this is at z0.
To evaluate (1) we deform the contour (as we may by Cauchy’s theorem) so that it passes
through the saddle point. Near z0 we set

f(z) ' f(z0) +
1

2
f ′′(z0)(z − z0)

2 g(z) ' g(z0)

and I(N) becomes

I(N) = g(z0)e
Nf(z0)

∫
exp

{
1

2
Nf ′′(z0)(z − z0)

2
}

dz .

Now set
z − z0 = reiφ f ′′(z0) = |f ′′(z0)|eiθ

We are free to choose φ which is the the angle at which the contour passes through the
saddle point; we will make a convenient choice of φ to make the final integration simple.

We have

I ' g(z0) exp(Nf(z0))
∫

exp
{

1

2
N |f ′′(z0)|eiθr2e2iφ

}
eiφ dr

Now choose θ + 2φ = π i.e. φ = (π − θ)/2 then

I ' g(z0)e
Nf(z0) eiφ

∫
dr exp

{
−1

2
N |f ′′(z0)|r2

}
Extending as usual the limits of integration to infinity and performing the gaussian integral
yields

I ' g(z0)e
Nf(z0) eiφ

(
2π

N |f ′′(z0)|

)1/2

where φ =
π − θ

2
(2)
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(2) gives ‘the saddle-point approximation’ to the integral.

As with Laplace’s method one can in principle calculate further terms in the asymptotic
series but again this is very tedious.

The path we chose to make the integration a gaussian (i.e. fixed phase φ = (π − θ)/2)
corresponds to the path that descends most steeply from the saddle point (see e.g. Arfken
for proof). Hence the name. Actually taking this path is not essential e.g. the method of
stationary phase takes another path (see below) but of course gives the same final result.

5. 1. Relation to Laplace’s method and method of stationary phase

Laplace’s method corresponds to having a saddle point on the real axis with
∂2u

∂x2
< 0

(maximum in the x (real) direction) and
∂2u

∂y2
> 0 (minimum in the y (imaginary) direction).

We go through the saddle point along the real axis and φ = 0 i.e. in (2) f ′′ is real and
negative so θ = π and φ = 0.

The method of stationary phase corresponds to going through a saddle point on a contour
where θ + 2φ = π/2 so that∫

dz exp
{

N

2
f ′′(z0)(z − z0)

2
}

= e−iθ/2+iπ/4
∫

dr exp
{

iN

2
|f ′′(z0)|r2

}

5. 2. Example: The binomial coefficient

Consider the following contour integral representation of the binomial coefficient(
N
M

)
=
∮ dz

2πi

(1 + z)N

zM+1

where the contour encircles the origin. To understand this formula expand (1 + z)N using
the binomial expansion then use the residue theroem to show that only the zM term of the
expansion survives through the contour integration. Thus the contour integral ‘sifts’ the
binomial expansion to select the correct term- make sure you understand this. Now consider
large M and N . Let M = Ny and write the integrand as(

N
M

)
=
∮ dz

2πi

1

z
exp N [ln(1 + z)− y ln z]

Now identify the saddle point: let f(z) = ln(1 + z)− y ln z

f ′(z) =
1

1 + z
− y

z
f ′′(z) = − 1

(1 + z)2
+

y

z2

f ′(z0) = 0 ⇒ z0 =
y

1− y

f(z0) = −y ln y − (1− y) ln(1− y) f ′′(z0) =
(1− y)3

y
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Since the only singularity in the original integrand is at z = 0 we can deform the contour to
pass through the saddle point and use the saddle point formula (2) that we derived in the
first part of the section.(

N
M

)
' 1

2πi

eiφ

z0

eNf(z0)

(
2π

Nf ′′(z0)

)1/2

where φ = π/2

=

(
1

2πNy(1− y)

)1/2

exp−N [y ln y + (1− y) ln(1− y)]

The argument of the exponential should be familiar from statistical mechanics. In this
example the saddle point z0 lies on the real axis and is a minimum along the real axis but
a maximum with respect to the imaginary direction. We go through the saddle point in the
imaginary direction.

5. 3. Further Notes on the saddle point method

• If there are several saddle points one should sum the contribution from each. Often
one will be dominant. Interesting phenomena occurs when on varying a parameter one
saddle point rises above the other. Then the asymptotic expression for the integral
changes in a non-analytic way. In statistical physics this is the mechanism for a first
order phase transition.

• Care should be taken to go through the saddle point in the correct sense otherwise one
can obtain minus the true approximation to the integral (see next example).

• If there is no saddle point then the integral will be dominated by a boundary where f ′

may not be zero and a slightly different expansion has to be made.

5. 4. Example: Hankel function

The Hankel functions (of the first kind) are solutions of Bessel’s equation (see later). They
may be written as a contour integral

H(1)
ν (x) =

1

πi

∫ −∞+iε

0+iε
exp

[
x

2

(
z − 1

z

)]
dz

zν+1

where there is a branch cut along the negative real axis. Let f(z) =
1

2

(
z − 1

z

)
. We find

there are two saddle points:

f ′(z) =
1

2
+

1

2z2
f ′(z0) = 0 ⇒ z0 = ±i

Now due to the nature of the contour (sketch the figure) we can deform the contour to go
through the saddle point z0 = i. (Think about why we don’t deform to go through the other
saddle point.)

f ′′(z) = − 1

z3
f ′′(z0) = −i = e−iπ/2
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Figure 1: The contour for the Hankel function H(1)
ν , position of saddle points and deformed

contour.

Let z − i = reiφ Then

H(1)
ν ∼ eiφ

πi

∫ dr

iν+1
exp

[
x

(
i +

r2

2
ei(2φ−π/2)

)]

To turn the integral into a Gaussian we choose 2φ− π/2 = π i.e. φ = 3π/4. Then

H(1)
ν (x) ∼ e3πi/4+ix

π iν+2

∫ ∞

−∞
dr exp(−xr2/2)

= exp (3πi/4 + ix− πi(ν + 2)/2)

√
2

πx

=

√
2

πx
ei(x−νπ/2−π/4)

You should check that this agrees with the general result (2).

We now return to the question of the sense of the contour. We could also have turned the
final integral above into a Gaussian by choosing φ = −π/4 which would have yielded -ve the
correct final result. The reason is (compare with your sketch) that φ = −π/4 would mean
going backwards through the saddle point (remember φ is the angle of the contour to the real
axis). When using the saddle point formula (2) it is best to check that φ = (π − θ)/2 gives
the correct sense for passing through the saddle point, according to the original integration
contour.
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