
1. Monte Carlo methods, and the Ising model

Monte-Carlo algorithms (named after the Monte Carlo casino) work by using
random number to estimate integral and statistical averages. In this Section we
will study how they work, and we will focus on the Metropolis algorithm which
is the primary way to estimate a quantity in a system in thermodynamic equilib-
rium. The physical system which we consider as an example is the Ising model
which you should study in Checkpoint 1, and which you should have encoun-
tered in Statistical Physics – however the basic properties are briefly reviewed
here as well. The approach taken here is practical, and the aim is to allow you
to understand (i) how to set up in practice a Monte Carlo simulation based on
the Metropolis algorithm, and (ii) why it works. We will also briefly discuss how
to estimate errors in the quantities you measure in a Monte-Carlo simulation.

1.1. Monte-Carlo integration

Let us suppose that we wish to evaluate numerically the following d-dimensional
integral, over a volume V ,

I =

∫

V

ddrf(r) =

∫

dx1 . . .

∫

dxdθV rf(x1, . . . xd) (1)

where f is some given function, and we have introduced a function θV r which
is 1 inside V and 0 outside (sometimes this is called the indicator function for
V).

One way to estimate I numerically is via the trapezoid rule. This consists
in coming up with a subdivision of the volume V into n intervals, each one of
volume δd, so that n = V/δd. Inside each interval, we approximate f via a linear
function (in all of its arguments), thereby making an error of order δ2. We then
evaluate I via the sum

I ≃

n
∑

i=1

δdfi (2)

where fi is the average of f over the i-th integration volume. A little thought
shows that the error on I should be of order nδdδ2 as there are n terms and each
of the fi has an error δ2 as it is a linearly accurate approximation to f . Recalling
that n = V/δd, we then get that the error is proportional to δ2 or to n−2/d.
Apart from the algebra, the important thing to get is that the error made by
estimating a d-dimensional integral with a standard discretisation into a sum
(with the trapexoidal rule) decreases with the number of integration intervals
n, as intuition suggests, but the speed of convergence depends on d, and gets
slower as the dimension increases.

In other words, in high dimension standard discretisation is not a good
way to compute integrals – it also becomes very slow! Monte-Carlo integration
provides an alternative. The underlying idea is to relate I to a suitable average,

1

as follows,

I =

∫

V

ddrf(r) =

∫

V ddrf(r)

V
V = fV V (3)

where fV is nothing but the average of the function f(r) over the volume V .
Then a possible way to estimate I is to draw a few (say n) random numbers,
uniformly distributed within the d-dimensional volume V , and attempt an es-
timate of the average of f within the volume using these values. If we label by
{r1, . . . , rn} the n points chosen randomly in V , the Monte-Carlo estimation of
the integral would then be

I ≃

∑n
i=1

f(ri)

n
V. (4)

In other words, it is a bit like doing an experiment, in which we measure f
several times and then average out the measurements to find fV . It might seem
that this is a rather inefficient way to estimate our integral! However, we can
convince ourselves quite easily that the error in the average in Eq. 4 decreases
with n as n−1/2 (as the standard error of the mean has this dependence, due
ultimately to the central limit theorem). Therefore, when the dimension is high
(or indeed larger than 4), it appears Monte-Carlo methods can estimate inte-
grals better than standard discretisation methods.

1.2. Importance sampling and the Ising model

An example of a situation in which we need to routinely perform integrals in
(very) high dimensions is provided by statistical mechanics. In this field, Monte
Carlo methods are very much used, and are quite powerful. Recall that the
partition function of a system with N particles/constituents is given by

ZN =
∑

states

exp (−βE) (5)

where E is the energy (or Hamiltonian) of the system. The energy clearly
depends on which state (or configuration) is considered. Now what the sum
over states means depends on the specific system we are studying. In all cases,
however, it corresponds to a very difficult operation to perform numerically.
For a three-dimensional fluid of N interacting particles, the sum is an integral
over all particle positions (and momenta, but the integral there can easily be
performed analytically). Therefore one is left with a 3N dimensional integral,
where ideally N is very large! Monte-Carlo methods are clearly very good to
estimate integrals like these.

In particular, we are typically interested in the average of some observable
quantity A (for instance the energy, or its square), so that we would like to
compute, for example,

〈A〉 =

∑

states
A(state) exp (−βE)

∑

states
exp (−βE)

. (6)

2

A Monte-Carlo strategy to estimate this integral is to generate randomly n
states, uniformly distributed among the ensemble of all possible configuration
of the system, and average both the numerator and denominator in Eq. 6, as
follows

〈A〉 =

∑n
i=1

Ai exp (−βEi)
∑n

i=1
exp (−βEi)

. (7)

As a prototype statistical physics system, we will consider the Ising model.
The Ising model comprises spins Si on a lattice, each of which can point up,
Si = 1, or down, Si = −1. Each neighbouring pair of aligned spins lowers the
energy of the system by an amount J > 0. Thus, given a spin configuration Si,
the total energy is

E({Si}) = −J
∑

〈ij〉

SiSj (8)

where the sum is over all distinct nearest neighbour pairs 〈ij〉. According to
the Boltzmann distribution, that probability of observing a given configuration
{Si} at equilibrium is

P ({Si}) = exp [−E({Si})/(kBT)] (9)

where kB is Boltzmanns constant and T is the temperature. In line with stan-
dard practice, we will call β = 1

kBT in the following. Now, in Eqs. 5 and 6 the
sum over states is a discrete sum, rather than a continuum integral, but the
simplest Monte-Carlo way to evaluate the average of an observable A is still to
generate n uncorrelated conformations of N spin randomly, in a way in which all
configurations are equally likely, and then to compute 〈A〉 as in Eq. 7. A simple
way to generate states randomly and uniformly is to draw a random number
between 0 and 1 for each site of the lattice, and assign the spin value +1 is the
random number is larger or equal to 1/2, and −1 otherwise.

There is however an important fundamental issue with any Monte-Carlo
estimate of averages of observables via Eq. 7, which we now need to discuss. The
problem is that, if we generate states randomly with uniform probability, so that
each configuration is a priori equally likely, we are in danger of generating several
configurations for which the associated Boltzmann weight, i.e. the value of
exp [−E/(kBT)], is small, or even extremely small with respect to the maximal
value of exp [−E/(kBT)] over the whole configuration space. Think for instance
of an Ising model at low T . Here the dominating states are the two degenerate
ground states, where all spins are aligned (all up or all down). However, there
are as many as 2N states from which to choose from: the chance of hitting by
chance either of the two ground state (or a closely related state) for a large
system is practically zero! Then, the estimate of 〈A〉 will never be good.

This problem can be solved by “importance sampling”. This refers to the
idea to generate configurations not randomly, but in a biased way, and accord-
ing to a predefinite probability distribution. Imagine that, instead of generating
configurations γ1, . . . , γn with uniform probability, we generate µ1, . . . , µn with
probability corresponding to the Boltzmann distribution, i.e. with probability

3

A B

Figure 1: (A) A state of a 3×3 Ising lattice, say ν. (B) Another state µ obtained
from ν via Glauber dynamics, selecting the red spin in (A,B) and flipping it.

proportional to the exponential of (minus) the energy of the configuration di-
vided by kBT . In this way we will automatically sample more often the states
which have a larger weight in the sums in both the numerator and denomi-
nator of Eq. 7, and our estimate of 〈A〉 should be much better. If the {µi}i

configurations are generated according to importance sampling (guided by the
Boltzmann distribution), then Eq. 6 can be estimated as a simple average as
follows,

〈A〉 =

∑n
i=1

A(µi)

n
. (10)

This is the way that most Monte-Carlo simulations are set up, especially when
formulated to solve problems in statistical physics (e.g. to study our Ising
model).

1.3. Markov chains and the Metropolis algorithm

How can we possibly choose a set of states {µi} according to the Boltzmann
(or for what matters, any other set equilibrium) distribution?

The idea is to set up a “Markov chain”, i.e. a dynamical rule which, starting
from a given state µ, prescribes a way to choose (stochastically) a following
state ν, and from there another one, λ, and so on and so forth. Provided the
dynamical rule is chosen “appropriately”, then after several steps the states
are generated with a steady state (equilibrium) probability which is the one we
want.

Let us consider as an example the Ising model introduced previously, and
describe one possible “appropriate” way to generate a Markov chain so as to
sample states according to the Boltzmann weight. Imagine starting from a state
ν given in Fig. 1A.

1. We first generate a candidate new state, µ, by choosing one spin at
random, and flipping it. This is called “Glauber dynamics”. The proposed

4

state is shown in Fig. 1B.
2. We then compute the energy of both the original state, Eν , and that of

the proposed new state, with the spin flipped, Eµ. We note that, due to the
local nature of the Glauber update, it is sensible to not compute energies by
summing over all nearest neighbour links, but to only consider the variation of
the energy associated with the links affected by the flip. As an exercise, try
computing the change of energy ∆E = Eµ − Eν by only summing over local
quantities involving spins affected by the flip (see Checkpoint 1).

3. Now that we have a proposed new state µ, and an energy difference
∆E = Eµ −Eν , we need to provide a rule as to whether or not the new configu-
ration is accepted. This is done according to the so-called Metropolis algorithm,
which is arguably the most important concept in Monte-Carlo simulations. The
Metropolis algorithm works as follows. If ∆E < 0, i.e. if the new proposed
state is better, energy-wise, than the current state ν, then the move is accepted
automatically. If, on the other hand, ∆E > 0, than the trial move is accepted
with probability exp (−β∆E). In other words, the move from ν to µ is accepted
with probability

p = A(ν → µ) = min{1, exp (−β∆E)}. (11)

To implement Eq. 11, we need to draw a random number r from 0 to 1, and
accept the move provided that r ≤ p.

1.4 Why the Metropolis algorithm works: ergodicity and detailed balance

Let us now try and prove why the Metropolis algorithm together with the
Glauber dynamics provides a suitable way to generate states according to the
Boltzmann weight in the Ising model. To do this, we need to convince our-
selves that each state, µ, is generated, at least after many steps in the Markov
chain (after which memory of the initial condition is lost), with probability
∼ exp (−βEµ). We note that a consequence of this requirement is that all states
with Eµ < +∞ (so the ones which are not disallowed thermodynamically) must

be reachable through the Markov chain we set up, as their probability in steady
state is larger than 0 (even though it may be very small if Eµ is much larger
than the ground state energy, i.e. the minimum value of the energy over all con-
figurations). This requirement is known as ergodicity, and it sometimes is very
hard to prove rigorously for Monte-Carlo algorithms! In our case the Glauber
dynamics is ergodic as each state can theoretically be reached from any other
state by choosing and flipping a suitable number of spins.

We now write down an equation for the probability of being in state µ at
time t. This is governed by the so-called master equation,

∂pµ

∂t
= −

∑

ν 6=µ

pµP (µ → ν) +
∑

ν 6=µ

pνP (ν → µ) (12)

In the right hand side of Eq. 12, the first term represents the probability flux
out of state µ, while the second term represents the flux into µ. We note that

5

we can include the term µ in both sums, as this is equivalent to adding and
subtracting the same quantity, pµP (µ → µ) (P (µ → µ) is the probability that
the Markov chain does not move, i.e. that the trial move is rejected). The
master equation then becomes

∂pµ

∂t
= −

∑

ν

pµP (µ → ν) +
∑

ν

pνP (ν → µ) (13)

where the sum is over all ν states. Note that in the Glauber dynamics the only
ν 6= µ states which contribute are those which differ from µ by a single spin flip,
so that many of the P (µ → ν) and P (ν → µ) probabilities are zero – anyway
the master equation still holds.

Now, if any equilibrium is to be reached, as is required of our Markov chain
(whose associate pµ should approach the Boltzmann distribution), we need the
flux out of µ to be equal to the flux into µ at large times. Therefore the following
identity has to hold,

∑

ν

pµP (µ → ν) =
∑

ν

pνP (ν → µ). (14)

By noting that
∑

ν P (µ → ν) = 1 (i.e. something has to happen, either µ stays
where it is or goes into some other state), one may rewrite this equation as
pµ =

∑

ν pνP (ν → µ). While correct, this is not too helpful for us here though,
as the resulting equation is an infinite matrix equation which is difficult to work
with. On the other hand, one may observe that the simplest way to solve Eq. 14
is to require that all the terms in the two series are individually equal, namely
to require that

pµP (µ → ν) = pνP (ν → µ), (15)

for all possible states ν and µ. Eq. 15 is the so-called detailed balance con-
dition, and is used ubiquitously in Monte-Carlo simulations (even though as
clear from this derivation it is not strictly necessary for a Markov chain to reach
equilibrium).

Now, for Glauber dynamics, Eq. 15 is not trivial only for states µ and ν
which differ by (at most) one spin flip. For those, the probabilities are non-zero
and we can rewrite Eq. 15 as

P (ν → µ)

P (µ → ν)
=

pµ

pν
= exp [−β (Eµ − Eν)] , (16)

where the last equality stems from the fact that we want to converge to the
Boltzmann distribution.

For our Markov chain, which couples Glauber dynamics and the Metropolis
algorithm, the probability P (ν → µ) is given by:

P (ν → µ) = g(ν → µ)A(ν → µ) (17)

where g(ν → µ) is the probability of choosing µ as a proposed new state starting
from µ, while A(ν → µ) is the acceptance probability in Eq. 11. Noting that

6

g(µ → ν) = g(ν → µ) = 1/N (where N is the number of Ising spins), as the
spin to be flipped is chosen randomly with uniform probability, we obtain that

P (ν → µ)

P (µ → ν)
=

g(ν → µ)A(ν → µ)

g(µ → ν)A(µ → ν)
(18)

=
1/N min{1, exp [−β(Eµ − Eν)]}

1/N min{1, exp [−β(Eν − Eµ)]}

= exp [−β (Eµ − Eν)] ,

as required. This proves that the Glauber dynamics and the Metropolis algo-
rithm provide a sound way to set up a Monte-Carlo simulations to sample the
Boltzmann distribution for an Ising model.

An alternative way to sample an equilibrium state of the Ising model is to use
Kawasaki dynamics. Here, one chooses two distinct sites i and j (not necessarily
neighbours), and considers as a trial move exchanging this pair of spins. You
should also implement this choice in Checkpoint 1, and think about its effects. Is
Kawasaki dynamics ergodic? What ensemble of states does it sample efficiently?

1.5 Pseudo-random number generators

Now that we have set up in principle a Monte-Carlo simulation, it is useful to
briefly pause and ask, how can we generate random numbers? Luckily, it turns
out that the only random number we really need to generate are uniformly
distributed between 0 and 1 – any distribution of random numbers which we
require can be, with a variable degree of intermediate work, be mapped onto
the uniform distribution between 0 and 1!

Even so, it is far from trivial to generate random numbers efficiently. The
current algorithms actually use some deterministic recursions to generate these
numbers, so that these algorithms are usually called “pseudo-random number”
generators. The simplest way to generate pseudo-random numbers is to define
a succession of integers {in}n, such that

in = f(in−1) (19)

where f is some function. The most common pseudo-random number generators
are the “linear congruential generators”, which work with the following recursion

in = (ain−1 + c)mod m (20)

where a, c, and m are integers, and where p mod q returns the remainder after di-
viding p by q (e.g. 5 mod 3 = 2). If a, c and m are appropriately chosen, dividing
in by m one gets a “random number” between 0 and 1. A recommended choice
with this simple algorithm (see the very good book on Monte-Carlo simulations
by Barkema and Newman) has a = 2416, c = 374441 and m = 1771875.

Note that the fact that the pseudo-random numbers are defined via a de-
terministic recursion has the consequence that after a period w the sequence
repeats. In practice, provided that w is large enough this is not really an issue.

7

The Java random number generator is good enough for our purposes for this
course. A very good random number generator is Mersenne-Twister, which has
a really long recurrence period.

1.6 How to study phase transitions in finite systems

OK: now we have a sound method (the Metropolis algorithm) which allows
us to set up a Markov chain which is guaranteed to converge, after a suffi-
cient amount of time (the so-called “equilibration time”) has elapsed, to the
Boltzmann distribution. We can then estimate for instance the average (scaled)
magnetisation of the system by performing n measurements (of the system in a
set of states {µi}) in a Monte-Carlo simulation as follows

m =
M

N
=

∑N
i=1

Si

N
(21)

〈m〉 =

∑n
i=1

m(µi)

n
.

We would expect that the order parameter should be close to 0 for large tem-
perature where the system is disordered (entropy wins over J), while it should
be large and close to 1 in absolute value for very small temperature (where the
Boltzmann weight is dominated by the ground state). Statistical physics tells
us that these regimes are separated by a phase transition at which the value
of the magnetisation departs from zero, and it has a discontinuous derivative
there.

Here there is, however, the first problem. In the absence of an external
magnetic field there is no way to tell whether the system will select a positive
or a negative magnetisation, as these are degenerate ground states. Worse still,
for any finite system it is possible to go from one state to the other by flipping
all spins – this will take a very long time if N is large, but it is possible, and will
sooner or later occur! Therefore, the average of the magnetisation is actually
zero in all cases, and it would appear impossible to speak of any phase transition.
While this is strictly speaking true for finite systems, phase transitions, which
only exist at N = ∞, luckily leave detectable signatures at finite N as well. To
begin with, the issue of the two possible magnetised states coexisting can be
dealt with by measuring the absolute value of the scaled magnetisation, 〈|m|〉,
instead of 〈m〉. In this case, however, there is a finite values of 〈|m|〉 even at
large temperatures, as we are averaging numbers which are always positive. In
the limit of N → ∞, the scaled magnetisation becomes smaller and smaller, but
it reaches zero only at infinite N . In other words, the phase transition point
has now been smoothed out.

Again, we are fortunate that we can locate the phase transition point more
accurately via another route. The key observation is that fluctuations become
larger and larger close to the phase transition point (the system is “undecided”
between the ordered and disordered phase as their free energy is close near
criticality). These fluctuations diverge at the critical point at N → ∞ (this is

8

due to the fact that fluctuations are mathematically linked to the derivative of
the magnetisation and similar quantities, which diverge at the phase transition
point). For finite N , there is no actual divergence, but these fluctuations are
maximal and reach a peak, which is easily detectable in simulations. Examples
of fluctuations which are useful to locate the critical point in the Ising model
are the susceptibility (magnetisation fluctuation) and the specific heat (energy
fluctuations), defined precisely respectively as

χ =
1

NkBT

(

〈M2〉 − 〈M〉2
)

, (22)

and

C =
1

kBT 2

(

〈E2〉 − 〈E〉2
)

. (23)

In Checkpoint 1 you should measure χ and C to quantitatively locate the criti-
cal temperature of the Ising model.

1.7 Errors, autocorrelation times, and more advanced methods of error esti-

mates

Now you are in a position to set up a Monte-Carlo calculation to study the
phase transition in the Ising model, from a disordered to an ordered state, which
is observed, for instance, by decreasing the temperature T (at J = kB = 1).
It is also important to calculate and report the error in the estimates of the
observables (such as energy, magnetisation, specific heat etc), and here we briefly
discuss how to do this in a sound way.

We start from the simplest case. Suppose we want to compute the average
scaled magnetisation 〈m〉 = 〈M〉/N of the Ising model, and to do this we
generate n configurations in a Monte-Carlo simulation. Our estimate of 〈m〉
will simply be

〈m〉 =

∑n
i=1

mi

n
. (24)

What about the error? The simplest option is to say that the error should be
the standard deviation of the mean,

σm =

√

〈m2〉 − 〈m〉

n − 1
. (25)

However this is only correct under the assumption that all n measurements are
statistically indepenent, or uncorrelated. If you take a configuration, for in-
stance, every spin flip, the configurations will be very correlated for a long time,
and even when averaging over several steps we still essentially always consider
the same configuration – this cannot lead to any decrease in the error of our
estimate for 〈m〉! The way to deal with this is to compute the autocorrelation
time of our Markov chain, τ , which is physically the number of steps in our
sequence of measurements after which the configurations lose correlations. The
autocorrelation time can be estimated via the following average

χ(t) = 〈m(t′)m(t + t′)〉 − 〈m〉2. (26)

9

If χ(t) is normalised by its value at t = 0, then one expects that χ(t)/χ(0) ∼
exp (−t/τ), i.e. χ(t) should decay to 0 after a typical time which is of the order
of τ . It can then be proved that the best estimate of the error on 〈m〉, when we
use n configurations, sampled every T steps in our Markov chain, is given by

σm ∼

√

〈m2〉 − 〈m〉

nT
2τ, (27)

where τ is the autocorrelation time, and where we have approximated n−1 ∼ n
(for large number of measurements): the reason behind the appearance of the
factor of 2 is non-trivial and we will not discuss it here!

The final point we wish to touch is the error of some more complicated
quantities, such as the specific heat, C, or the scaled specific heat c = C/N .
Eq. 23 shows that the estimate of these quantities requires already the first and
second moment of E. The error can in principle be computed by propagation
but this is very tedious. There are two simpler methods which we recommend,
and that we briefly outline at the end of this Section: the bootstrap method
and the jacknife method.

The bootstrap method consists in taking our n (independent, i.e. uncorre-
lated) states. We then pick out n of these at random (every time we pick one out
of n measurements randomly, and we can pick the same measurement several
times). We then compute c = C/N for each of the sets of measurements as we
would normally do, and we repeat this whole procedure several time. One may
prove that the error on the quantity of interest, in our case c, is given

σc =

√

c2 − c2 (28)

where the overline indicates averaging.
Another possibility is to choose the “jacknife” method. This works as fol-

lows. We start from our n uncorrelated states generated by our Monte-Carlo
simulations. We compute c from there, in the usual way. Then we remove the
first measurement, and recompute the scaled specific heat: we call this quantity
c1. For each i = 1, . . . , n, we repeat this procedure, taking out the i-th measure-
ments from the set, and computing c from the reduced set of n−1 measuremets:
we call each of these estimates ci. The error on c can then be estimated by the
following formula:

σc =

√

√

√

√

n
∑

i=1

(ci − c)2. (29)

You are welcome to experiment with these methods for your Ising model data!

10

