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Part 1
Exercises

A

Revision of statistical physics based on Appendices A and B

. The eigenvalues of the Schrodinger equation for an assembly of N independent particles in a

volume V take the form:
E, =B,V

where the B; are independent of V, and v = 2/3 or 1/3, according to whether the particles
have energies which are small or large when compared with their rest mass energy. Show that
the pressure in such an assembly is given by

P=~EV L

. Show that the fluctuations in the pressure and total energy of a fluid in a container of fixed

volume V', satisfy the relation
P
(AEAP) = kT? (M) ,
v

provided that the fluid is in thermal equilibrium.

. Consider a fluid in a container whose walls are flexible so that its volume may take on any one

of a set of values {V,,}. Obtain the probability p; o of finding the fluid to be in the eigenstate
1 with volume V,,. Identify the two Lagrange multipliers appearing in your result, given that
the mean energy and mean volume of the assembly are E and V, respectively.

. If the Gibbs entropy, as given by eqn (A.8) for an assembly in an ensemble, is specialised to

the case of an isolated system, show that it reduces to the usual Boltzmann form, viz.,
S=kInQ,

where (2 is the statistical weight of a given macrostate.

. A system in the canonical ensemble has access to states with energy eigenvalues E;. Show that

its probability of occupying a state | 7) can be written as

bi = e/B(F_Ei)a

where 8 = 1/kT and F is the Helmholtz free energy.

Verify that the mean energy of the assembly can be written as
9
op

and further show that the general (n + 1)-order moment of the deviation from its mean value
satisfies

E = Z(BF),

_ 9 — — OF
E-Ey""Y=——((E-E)" E—-E)"h)—.
(B—B)*) = 5@ =B +n((B-E)' ) 5
By specialising this general form, obtain the result
N R N
Cv = = [(B%) — (B)?).



Introducing magnetism, fluctuations and critical phenomena

. A magnetic assembly at a fixed temperature T is subject to an applied magnetic field B. If the
net magnetic moment of the assembly in state |¢) is M;, in the direction of the applied field,
then the associated energy eigenvalue is given by

Ei = GZ(B = 0) — MZB,

where e;(B = 0) is the energy arising from the mutual interaction of lattice spins.

Show that fluctuations of the magnetic moment about its mean value are given by
AM? = (M?) — (M)? = kTXr,
where X7 is the isothermal magnetic susceptibility defined by

Xp = [0(M)/0B]r.

. Show that the isothermal compressibility of an ideal gas is given by
0 _ 1
T nkr

where n is the number density

[ Note: in general the isothermal compressibility of a fluid is given by
1 /oV
Kr=——{(=—] .
TTv (BP)T ]

. If the number of particles N in an assembly fluctuates about some mean value N, the partition
function may be written as
Z — Z e*BEH'ﬂHN’
i,N
where p is the chemical potential and the other symbols have their usual meaning. Verify by
direct differentiation that the mean-square fluctuation in particle number is given by:

0%?lnZ
2 - ) = ez 2 )TV.

I

. Show that the mean-square fluctuation in particle number in a fluid may be expressed in terms
of the isothermal compressibility K7, Thus:

Kr _ (N —(N))?)

K N)
where K. is the compressibility of an ideal gas.

[Note: the following relationships may be found helpful:

PV = kT 2,

(BP) N
—_— = n= e
o/ 1y 4

and

where p is the chemical potential]



. Sketch the isotherms for a fluid in the PV plane for T in the neighbourhood of T,. Comment on
the behaviour of the isothermal compressibility as T' — T, and also on the related behaviour
of the density fluctuations.

Show that a divergent susceptibility is mathematically related to an increase in the correlation
length of density-density fluctuations and comment on the experimental manifestation of this
effect.

[Note: the density-density correlation G(r — r') is defined by:
G(r—r') = ({n(r) — (n(r)) {n(r') — (n(r))}),

where n(r) is the local number density].

Exercises for Chapter One

. Show that the number a is a fixed point of the dynamical system
X(n+1) = f((X(n)),
if a satisfies the equation:
a= f(a).
Hence show:
(a) That a = 3 is the fixed point of the dynamical system
X(n+1)=2X(n) —3.
(b) That the dynamical system
X(n+1)=rX(a)+b
only has a fixed point at infinity if r = 1.

. Obtain and verify the two fixed points of the dynamical system
X(n+1)=[X(n)+4]X(n) +2.

Calculate X (n) to four-figure accuracy for initial values X (0) = —1.01, —0.99 and —2.4 taking
values of n up to n = 7 and comment on the results.

. The logistic equation of population growth takes the form
X(n+1)=(147)X(n) —bX?(n)

where r is the growth rate (r = births — deaths) and b = r/L, where L is the maximum
population which the environment can support. Obtain the two fixed-point values of the
system and briefly comment on their physical significance.

. For any system which undergoes a single phase transition, two of the fixed points may imme-
diately be identified as the low-temperature and high-temperature fixed points. Discuss the
physical significance of these points and explain why they are attractive.

How would your conclusions be affected if we chose to apply these arguments to the one-
dimensional Ising model as a special case?

. A system has energy levels E; = 0,¢€1,€9,€3 ... with degeneracies g; = 1,2,2,1.... The system
is in equilibrium with a thermal reservoir at temperature 7', such that e #% < 1 for j > 4.
Work out the partition function, the mean energy and the mean squared energy of the system.

N.B. An energy level with a degeneracy of two implies two states with the same energy. The
partition function is a sum over states, not levels.



6. When a particle with spin % is placed in a magnetic field B, its energy level is split into +uB
and it has a magnetic moment +y (respectively) along the direction of the magnetic field.
Suppose that an assembly of N such particles on a lattice is placed in a magnetic field B and
is kept at a temperature 7. Find the internal energy, the entropy, the specific heat and the
total magnetic moment of this assembly.

Exercises for Chapter Two

1. A linear chain Ising model has a Hamiltonian given by

N-1
H=—3 JiSiSi1.

=1
Show that the partition function takes the form:

N-1
Zy =2V H cosh K,
i=1
where K; = J;/kT is the coupling parameter.

Obtain the spin-spin correlation function in terms of the partition function and show that for
uniform interaction strength it takes the form:

Grn(r) = (SpSntr) = tanh” K.

where K is the coupling constant for the model.
Comment on the possibility of long-range order appearing in the cases: (a) T > 0; and (b)
T=0.

2. Show that the transfer matrix method may be extended to the case of an Ising ring located
in a constant field B and hence obtain the free energy per lattice site in the form:

1
f=—-J— 3 In[cosh BB + (¢?#” sinh® BB + eQﬂJ)%],

where all the symbols have their usual meaning.

[Hint: When generalizing the transfer matrix to the case of non-zero external field remember
that it must remain symmetric in its indices.]

Obtain an expression for the specific magnetization m = (S), and discuss its dependence on

the external field B. comment on your results.

3. The RG recursion relations for a one-dimensional Ising model in an external field B may be
written as;

p_w(l4y)? y = Yty
(+y)(1 +ay)’ 1 +ay)’
where z = e *//kT" and y = e~ B/kT". Verify the existence of fixed points as follows: (z*,y*) =

(0,0); (z*,y*) =(0,1) and a line of fixed points z* =1 for 0 < y* < 1. Discuss the physical
significance of these points and sketch the system point flows in the two-dimensional parameter
space bounded by 0 <z <land 0 <y < 1.

4. Verify that summing over alternate spins on a square lattice results in a new square lattice
rotated through 45° relative to the original lattice and with a scale factor of b = v/2.

Also verify that the effect of such a decimation on the Ising model is to change the original
partition function involving only pairs of nearest neighbours to a form involving nearest-
neighbours, next-to-nearest neighbours and the product of four spins taken ‘round a square’.



Exercises for Chapter Three

. On the basis of the Weiss molecular field theory, show that the Ising model cannot exhibit a
spontaneous magnetisation for temperatures greater than 7' = T,, where the Curie temperature
is given by T, = J/k.

. An isolated parallel plate capacitor has a potential difference V between its electrodes, which
are situated at £ = +a. The space between the electrodes is occupied by an ionic solution
which has a dielectric constant of unity. Obtain an expression for n(z), the space charge
distribution, which exists after the system has reached thermal equilibrium. For the sake of
simplicity you may assume that the potential difference between the plates is so small that
eV < kT.

[Hint: take z = 0 as a plane of symmetry where:
(a) ny(0) = n_(0) = no (say)
(b) the potential equals zero.]

. Using the Landau model for phase transitions obtain values for the critical exponents 3,y and
0.

Exercises for Chapter Four

. Use the high-temperature expansion to show that the partition function of the (open) Ising
linear chain takes the form
Zy =2 coshV 1 K,

and explain the differences between this and the result for the Ising ring.

. Use the method of high-temperature expansion to obtain the spin-spin correlation (S,,S,,) of
the Ising model as

P
(SmSn) = Zy" cosh” K2V " fron (r)o",
r=1

where P is the number of nearest neighbour pairs, v = tanh K and fy,,,(r) is the number of
graphs of r lines, with even vertices except at sites m and n.

Show that for the case of the Ising linear chain, this reduces to
<Sm5n> = ,U|nfm|,
and draw the corresponding graph.

. If one can assume that the interparticle potential ¢(r) is large (and positive) on the scale of
kT, for r < d; and is small for r > d, where d is the molecular diameter, then it may be shown
that the second virial coefficient can be written as

By =B — AJKT.

Obtain explicit expressions for the constants A and B, and show that the resulting equation
of state may be reduced to the Van der Waal’s equation.

. If a gas of interacting particles is modelled as hard spheres of radius a, show that the second

virial coefficient takes the form:
2ra®

3

Given that the third virial coefficient may be written as:

By =

By = [dr [ @' S5 (e =)

6



where f(r) = e #%(") — 1, show that this is related to the second virial coefficient By by

5
B3=§B§,

for a system of hard spheres.

. A gas consisting of N classical point particles of mass m occupies a volume V at temperature
T. If the particles interact through a two-body potential of the form:

A
re) =
d)( l]) 7‘% ’
where A is a constant, r;; = |q; — q;| and n is positive, show that the canonical partition

function is a homogeneous function, in the sense
ZOT, A 3/mV) = NG Z(T, V),

where ) is an arbitrary scaling factor.

. Prove the identity

92¢

to second order in 8 by equating coefficients in the high-temperature (small 3) expansion of
each side of the relation, where H is an operator.

. Show that at high temperatures, the heat capacity of a quantum assembly can be written as

Cy =

1 [Tr(H?) [Tr(H)]?
kTQ{ Tr(l)  [Tr(D)? +0(ﬂ)}’

where g = 1/kT.

. Show that the use of the Van der Waals equation,

<P+ %) (V —b) = NKT,

to describe phase transitions in a fluid system leads to the following values for the critical
parameters:
P, = a/270%, V., = 3b, NkT, = 8a/27b.

Hence show that the Van der Waals equation may be written in the universal form
(~+ 3) (30 —1) =8t
p 1’}2 - 9

where
p=P/P., 0=V/|V,, t=T/T..

. By re-expressing the Van der Waals equation in terms of the reduced variables; P = (P —
P)/P, v=(V—-V.)/V,and ., = (T — 1) /T, obtain values for the critical exponents y and
0. Comment on the values which you obtain.



G

1.

Exercises for Chapter Seven

Prove the critical exponent inequality o + 28 + vy > 2

[Hint: you may assume the relationship
X7(Cp — Cn) = T(OM/OT)%,

where Cg and C), are the specific heats at constant field and magnetisation respectively.

. Additional critical exponents can be obtained if we differentiate the Gibbs free energy repeat-

edly with respect to the external magnetic field B, thus:
(8'G/oBYr = G ~ 95 Y,

where the Ay are known as the "gap exponents” and 6, is the reduced temperature. On the
basis of the Widom scaling hypothesis, show that the gap exponents are all equal and give
their value in terms of the parameters of the Widom scaling transformation.

. If we denote the order parameter (or specific magnetisation) by M, show that the mean-field

solution of the Ising model can be written as

M
M = tanh b
o [1 0. " ] ’
where 0, is the reduced temperature and b = 8B is the reduced external magnetic field.

By considering m for temperature close to T, and for zero external field, show that the asso-
ciated critical exponent takes the value 8 = %

[Hint: the following expansion
1
tanhz =z — ga:?’ +0(z%),

for small values of z, should be helpful.]

. Obtain an expression for the mean energy E of the Ising model when the applied field is zero,

using the simplest mean-field approximation. Hence show that the specific heat C'g has the
behaviour:

Cp = 0, forT > Tg;
= 3Nk/2, forT <T,.

What is the value of the associated critical exponent « ?

. By considering the behaviour of the order parameter at temperatures just above the critical

point, show that the critical exponent v, which is associated with the isothermal susceptibility,
takes the value v = —1 according to mean-field theory.

Also, by considering the effect of an externally applied magnetic field at T' = T,, show that
the exponent associated with the critical isotherm takes the value é§ = 3. [In the latter case,
the identity
tanh z 4 tanhy
tanh = )
anh(z +y) 1+ tanhz tanhy

may be helpful.]

. Show that the optimal free energy of an Ising model, which corresponds to the mean-field

theory, may be written in the form:

N N
F = ~5 In[2 cosh(B8Bg)] + E(BE — B)?,

where 8 = 1/kT, B is the externally applied magnetic field, Bg is the effective field experienced
by each spin, z is the coordination number and J is the interaction strength.



10.

. Consider an Ising model where the external field B; depends on the position of the lattice site

1. Show that the condition for the free energy to be a minimum takes the form:

BY — Bi =73 (S)),
o)

where all the symbols have their usual meaning and the notation indicates that the sum over
7 is restricted to nearest neighbours of 7. Also show that the optimal free energy takes the
form:

F= % In [2 cosh (5322'))] + %Z (Bg> _ B,-) (Si)o -

1

. A generalized Ising model has the usual Hamiltonian but each spin variable takes the values:

Si=—t,—t+1,....,t—1,t,

where ¢ may be either an integer or a half-odd integer. Using mean-field theory find the
critical temperature of this system, and then use this result to recover the critical temperature
corresponding to the standard two-state Ising model.

[Note: you may assume the relationship:

t 3 1
z 5 _ sinh [(t + 2) x]
sinh[z /2]

S=—t

. The Heisenberg model for ferromagnetism is given by the Hamiltonian:

H=-J > 8:8;—> BS;,

<> i

where S; is a three-dimensional unit vector and B is a uniform external magnetic field. Use
mean field theory to obtain an expression for the critical temperature 7.

[Hint: Take the external field to be in the Z direction.]

The Hamiltonian of a certain model system is given by

J
H=5 2 58 =B) 5,
ij %
with S; = +1. Show that the system undergoes a phase transition in all dimensions and find

the critical temperature in the thermodynamic limit N — oo.

Comment on the implications of this result for the Ising model.

Exercises for Chapter Eight

. The RG recursion relations for a one-dimensional Ising model in an external field B may be

written as;
p_ o x(4y)? o ylzty)
T @ryita) YT Aty
where z = e=*//kT and y = e B/kT_ Verify the existence of fixed points as follows: (z*,y*) =

(0,0); (z*,y*) =(0,1) and a line of fixed points z* =1 for 0 < y* < 1. Discuss the physical
significance of these points and sketch the system point flows in the two-dimensional parameter
space bounded by 0 < z < 1 and 0 < y < 1. By linearising about the ferromagnetic fixed point,
obtain the matrix of the RGT and show that the associated critical indices are y; = 2,y3 = 1
for scaling factor b = 2.



2. The Hamiltonian for the one-dimensional Ising model in an external field B may be written
as
H=-K )Y 88 —--BBY S;—-)> C,
<ij> % %
where C is a constant, background term. Show that the partition function for the system may
be written as a product of terms, each of which depends on only one of the even-numbered

spins. Hence, by partial summation over the even-numbered spins, obtain the recursion rela-
tions for K’, B' and C'.

3. Consider the two-dimensional Ising model under decimation on a square lattice. If we only take
into account the coupling constants K (nearest-neighbour interactions) and L (next-nearest-
neighbour interactions), the recursion relations are given by

K'=2K?+L; L'=K?2

Find the fixed points for these renormalization group equations and identify the critical one.
Linearising the RGT about this point, obtain a value for the critical exponent v.

4. Discuss bond percolation on a two-dimensional square lattice and, drawing analogies with
the Ising model where appropriate, introduce the concepts of critical probability, correlation
length, and critical exponent.

Show that the critical probability for this problem is p. = %

Apply the renormalization group to bond percolation, using a scheme in which alternate sites
are removed from the lattice. Show that the RG equation takes the form

P =2p* —p',

where p' is the probability of two sites being connected on the new lattice and p is the analogous
quantity for the old lattice. Verify that the fixed points are p* = 0,p* = 1, and p* =
(v/5—1)/2 ~ 0.62, and discuss the nature of these fixed points.

By linearizing the RG transformation about a fixed point, show that the relevant eigenvalue
of the transformation matrix is given bu

A = 4p* (1 - p).

Using this result, obtain a numerical value for the critical exponent v.

I Exercises for Chapter Nine

1. A particular model for the critical behaviour of spins on a d-dimensional lattice leads to
renormalization group equations of the form

P =bp+ C(b* — b%)q + O(pq);

!

q = bq,

where p and ¢ are the coupling constants, C' is a system constant which is positive and real,
€ = 4 —d, and b is the usual (length) scaling factor. By linearising about the fixed point
(p*,¢*) = (0,0), obtain the matrix of the RGT and show that the associated critical indices
arey; =2 and yo =4 —d.

Briefly discuss the nature of this fixed point.

Given that the critical indices for this model are the same as those for the mean-field theory
of the Ising model, comment briefly on the validity or otherwise of mean-field theory.

10



2. A particular model for the critical behaviour of spins on a d-dimensional lattice leads to
renormalization group equations of the form

du(b) A’X(b)  p(D)A(D)
T AR T o Yo
dA(b) 3X2(b)
T T2k

where 1 and A are the coupling constants, A is a system constant which is positive and real,
€ =4 —d, and b is the usual spatial rescaling factor. These equations are valid for small values
of e. Given that the criterion for a fixed point (u*, A*) is

du*(b) _ dA*(b)

dlnb ~ dlnb
verify that a fixed point (to order €) is given by
1672 A?
AF = 6;:6; and u*:—Te.

By linearising about the fixed point, obtain the matrix of the RGT and show that the associated
critical indices are y; = 2 — €¢/3 and y2 = —e.

Briefly discuss the nature of the fixed point with particular reference to the dimensionality of
the lattice.

Show that an expression for the critical exponent v can be written as:

1 € 2
1/—54—5—{—(9(6).

Part 11
Solutions

J Solutions to Exercises A

1. The analogue of eqn (B.11) for pressure in the canonical ensemble when extended to the grand

canonical ensemble is S
P=- LY ) -
Z ( v bi,N

N
Given:
Ein =BV
therefore
o~ B,V E
P=->(-NBV " 'pin=7> — dpr,N = X > Einpin = =
iN N 4 4 N v

(AB-AP) = ((E— E)(P— P)) = (E- P) — (E)(P).
Now (B.13) gives

P, = —-0E;/0V,
hence OF 1 OF
. Py — ) o A —Ei/kT | pp O
<E ) ;pz oV z ;6 rtYe

Clearly we now want to get this into the form:

11



(E)(P) plus ‘something else’.
Note: 5 5
Bie™ /T = (+RT%) g™ B0 = KT 5 (2py).
Substitute into the formula for (E - P) to obtain:
1 9 kT? 8
E-P)=——kT?*_—Z p0E;/0V = ~— _—_{Z(P

(remember P; = —0FE;/0V).
Now differentiate the product Z(P) with respect to T' and use the identity:
Z2192/0T = 0In 2 /0T,

with the result:
(E-P)— (P)(E) = (AE - AP) = kT?9(P)/0T.

. Put Ay = Ag and X\, = \,: then eqn (A.23) becomes
pi,a — Z*le*(AEEi,a‘FAaVa)’
and (A.24), (A.25) can be generalised as appropriate. The constraints are given by

E= Zpi,aEi,a; V= Zpi,aVa-
e 1,0

To identify the multipliers Ag, A\, we compare the macroscopic expression for dE (combined
1st and 2nd laws of thermodynamics) with the microscopic prediction.

From thermodynamics dE = TdS — PdV + Z Xydz.,.
v
From eqn(B.6) dE = Z E; odp; o + Zpi,adEi,a.
7,Q [NeY
Also, dS =Ag Y Eiadpia+Aa Y Vadpia.
1,0 1,0

Entropy is varied at constant V, so the constraint on V gives

dV = Z Vadpi,aa
2,Q
thus _
dS =g Z Ei,adpi,a + AadV,
2,00
and so ds A
ZEi,adpi,a = )\_ - )\_adv’
o E E
hence

— ds )\a — 8Ez [}
dE =22 2agy 4 o gy L
)\E AE ; {i,zaplaa 8./37 Y

Comparison of the ‘micro’ and ‘macro’ forms of dE leads to

Ag =1/T; Ao = P/T.

12



4. By equal a priori probabilities
1
bi = 53

for all ¢, where € is the number of microstates. The Gibbs entropy is given by

S=—k Zp, lnpi.
i
Every member of the summation is the same and there are €2 microstates, hence

1 1
S=-k (Q X 5) <ln§> =—k(—InQ)=kInQ,
as required.

5. From (B.18) we have
— 0 OlnZ
U R

for 8 = 1/kT.
From thermodynamics, free energy F = E — T'S and

S=—kY pilnp;=klnZ+ E/T.
7

Thus:
F=—kThZ=—-3'lnZ.

It follows that

Z = BF
and,
p; = ePF—Ei)
and so: 9 9
E = ——\— F = — F .
Now

( (BB =Y (BB
. . w0 srm,
— ;(EZ —E) H1B(F—E;) — _Z(EZ ~E) %eﬁ(F E;)
_ _9 S (B - B)nePEE) 4 3 HEED) 9 (g —E)r
9 =" : B
7171@
op

= —3<(E —E)"y +n ) T ENE -E)

_ — O0E
= —A(E-E)") +n((E-E)" ).
op
For the case n =1:
(AE?) = ((E - E)?)
(E—E)=0.
Making the change of variable and doing the differentiation at constant V,
— T .
(9,3 — kT*“Cy

13



Solutions to Exercises B

1. Given
E; = e;(B =0) — M;B, (*)

the probability of assembly being in state |i) is

e —Ei/kT

pi:Z

Obviously from equation (*), the instantaneous magnetic moment is given by
M,; = —0E;/0B.
Thus mean value of magnetic moment is given by:

OE; e Finr OlnZ
<M)_;szz—_; aB' Z = —kT 9B

Introduce:

_ o)\ Opi
XT = 5B )T_;MZGB
1 OE; Oz
= =S Mp, 2 R 2 N
i 2 Pi5E ~ 35 XZ: iDi
1

= ) — (M),

therefore
AM? = (M?) — (M)? = kTXp.

1 70V
Kp=——(22) .
r V(BP)T

For an ideal gas,

PV = NkT
(or P = &KT = nkT)
thus

V = NkT/P
and so

1 /(—NEKT 1 1 1 1
KY=—— (7) =—+—-PV =—=——(using above equation in brackets)
n
hence

as required.

3. Mean-square fluctuation:

(N —(N)?”) =



Given: Z =3, e PEFHNE

as required.

. From the previous question:

Now Z is partition function fo

Substituting for In Z, we have:

(kT)?

(KT)

k

Given:

0

v

= —-NKr

Given: (0V/0pu)

Hence

an

Evaluation of (6_u

(

, V0P

kTV3

KTV (

—kTN

dw
Oy

29
op

102

V5 | Zam

)

1

EzefﬂErFﬂllN %< N
i,N
1 02
22 0

(kT)%

|

kT

.Y NeBE+BuN
i,N

|

1

e Z /BNQe*ﬁEi’f‘ﬁﬂN

i, N
—(N)? + (N?)]

[
(N?) = (N)?,

r the Grand Canonical ensemble, hence we have:

PV =kThhZ.

T!‘

KTV <
), =

82
a—u?[

..
(2

T,V.
Bu) V-

Pz
op?

PV
KT

T ou?

on ov

o) (o
(5).

Em

ou
v
Op

n)y =kTV

),

9 N ( ) _ —kTVN
vV v V2
an(

(5). )

= +(kTn)NKr = (KT/K%) N.

),

1
o N

ov

op

op

(V- N

= Kr/KY.
~ r/Kr

)V. Use calculus identity:

9z
Oy

dw
Oy

8_w
0z

)= (). (

15
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= (), = Ga)r (), ().

Last term is zero as n = N/V doesn’t depend on N.
(), = (&)
o)y o) N’

((9_”) _ﬂ.a_V)
op TV V2 o op)y

Therefore

hence

as required.

. At T, P,
or _,
ov
therefore: 5P
Kr~1/—
T~ gy =

Thus at T, P,
K1 — 00, and so ((AN)?) = .

Consider relationship between density fluctuations and density-density correlation G(r —r').
Defining N = [, drn(r), we have

(N =) = ([ dr{n(x) = (@D [ ' {n) ~ (D)
and from the definition of G
(N-N)) = /dr/dr’G(r _ 7
= /dr/dr'G(r—r')
= / dr / dr"G(r")  from spatial homogeneity
- v / dr"G(x").
Combining with result of previous question:

Kr/KY=n""! / drG(r).

Solutions to Exercises C

X(n+1) = fX(n)]

Condition for a fixed point is
X(n+1l)=X(n)=a

therefore substituting above for X (n + 1), and X (n) gives
a = f(a),

as required.

(a)
X(n+1)=2X(n)—-3

16



therefore
FIX(0)] = 2X (n) — 3

Hence a = f(a) = a=2a —3 and a = 3.

(b)
X(n+1)=rX(n)+0b

f=rX(n)+b
fla)=ra+b
a = ra + b for a fixed point
a(l—7r)=0»b
b

1—1r

a =

Forr =1, a = .

. Given:
X(n+1) = [X(n) + 4X(n) +2
f(X(n)) = [X(n) +4]X(n) +2
f(@) = (a+4)a+2
Now, a = f(a) for a fixed point, so
a=(a+4)a+2=a=-1,-2.
Hence
X(0) = —1.01 Tim X(n) =2
X(0) = —-0.99 nlgrgoX(n) = 00;
X(0) = —24 nli)nc}oX(n) =—2.

See Section 1.6.3 for the rest of this solution.

. Logistic equation is
X(n+1)=(1+7r)X(n) —bX?(n),

thus:
a=(1+r)a—ba®> andso 0=a(r—ba).
But
b=r/L,

hence a

0=a(r— rf),
and so

0=a(l- g)7"

L

Asr#£0,a=0o0r L.

i.e. If population zero, it remains zero. Whereas if it grows, L is the limit.

17



4. Consider spins on a lattice. For T' > T, there is disorder on scales > & where £ is finite.
Coarse-graining effectively reduces ¢ and the system flows under RGT to complete disorder,
which is the high-temperature fixed point. Accordingly the high-temperature fixed point is
attractive.

For T' < T,, the reverse argument holds and the low-temperature fixed point - which corre-
sponds to perfect order - is also attractive.

In parameter space there must be a ’watershed’, which separates the trajectories to the low-T
and high-T fixed points. This is the critical surface and contains the mized or critical fixed
point.

For one-dimensional Ising, the situation is skewed, as the T' = 0 fixed point is also the critical
fixed point. For T' > 0, RGT flow is to the fixed point at T' — oco.
5. Partition sum
Z =14 2¢7Pa 2e7Pe2 ¢ Pes,

Mean energy

(2616_ﬂ61 + 2626_ﬂ62 + 636_ﬂ63)

B =
() -
Mean-square energy
(26%6_’861 +2e3ePe e%e‘ﬁ%)
(B?) = .
Z
6. As the particles are on a lattice they may be treated as distinguishable. Hence:
Zgis = (Z1)V,

where Z; is the partition function for any one spin. Now
Zl — Z e—ej/kT
J
— ¢ MB/KT | +uB/kT
= 2cosh(uB/kT).

Thus
Z4is = [2cosh(uB/kT)]N.

Helmholtz free energy F
F = —kTIn 24, = —NKT In[2 cosh(ub/kT))].
Internal energy U = (E)

U=(E) = kT2aiT In 246
= —NpyBtanh (uB/kT).
Entropy
S = (E-F)/kT
NEk{In[2 cosh pB/kT — uB/kT tanh (uB/kT)]}.
Magnetic moment M

M=Npg = N> up;
1

[MeuB/kT _ MefuB/kT}

= N eHB/kT | ouB/kT = N, tanh uB/KT.

Specific heat Cp
E
Cp = (‘9—) = Nk (uB/kT)?* | cosh? (uB/kT).
orT B

18



M Solutions to Exercises D

1. First part covered in Appendix C.
Define:
Gn(r) = (SnSn+r)-

r is distance between sites, measured in units of lattice constant a.

_ N-1lg o q J:
Gn(’l') = ZNl ansn-f—rezi:l KlSZSH'l; K, = k_jz"
{s}
Re-write
ZNGn(r) = SnSy e KiSiSi
{s}
Consider nearest neighbour case: r = 1.
ZnGr(l) = angnH e KiSiSiy1 _ K ZeZKiSiSi+l
{s} {s}
0
= —7
oKy N
and inductively
0 0 0
ZNGp(r) = 2.
N n(’f') 8Kn aKn—H aKn—H—l N
Hence:
2NTIY ! cosh K Gy (1) = 2VTIY 2 cosh K; x sinh K,
therefore

Gr(1) = tanh K,
Gn(r) = H;{‘:l tanh Kp ;1.
Uniform interaction = G,(r) = tanh” K.

Consider limit r — c0.T > 0, tanh K < 1 and G,, — 0 as r — oo. Hence for T =0, K — ¢
and G, — 1.

2. Generalize Hamiltonian:

N-1 N-1 N
H=-> JSSin - H=-) JSSi1—BY S
i=1 i=1 i=1
Generalize transfer function:

£(Si, Sit1) = e PH(SisSit1) — o+BISiSit1+BB(Si+5i41)/2

Let 8J = K, and B = b.

Transfer matrix
T = T+_|_ T+_ _ €K+b efK
“\NT T _ )\ e K Kb
where matrix elements are generated from:
Tiy = (S = £1,8;41 = £1).

Eigenvalues:
K 2K i 1.2 ok \1/2
A —=e coshbi(e sinh“ b+ e ) .

Zy =AY + AN

19



and as N — oo, only larger eigenvalue A, is relevant.

Free energy per lattice site: f = —% In Ay, and so:
—1 2K i 1.2 _ok\ /2
f=—K—8'In coshbi(e sinh?b + e ) .

0
m=(s) =— a—{

—1/2
sinh b + sinh bcosh b (e2K sinh? b + e—2K) /

1/2
[cosh b+ (e2K sinh?® b+ 6_2K) / ]

Asb — 0, m — 0 for all T. Except T' = 0 when one can have a finite permanent magnetization.

r = 1); = 2).
Croatay Gty @
0x1 1(0+1
(z*,y%) = (0,1) Eqn(l) —0= X0 eqn(2) — 1= 10+1) =1
1 140
0x1 0% 0
(z*,y*) = (0,0) Eqn(l) —0= >1< =0 eqn(2) — 0= >1< =0
1(1 + y)2
k=1, 0<yx <1 Eqn(1) - 1= % = Yy eqn(2) = ¢y’ = .
Y

zr=1cT=00;y=0, B=0oo,y=1, B=0,
therefore ferromagnetic fixed point is (0,1).

. Each spin on a square lattice interacts with the 4 nearest neighbours on a square round it.

Denote alternate spins on lattice by r;, remainder by #; :

{Si} = {rs} + {t:}.

Partition sum can be expressed in terms like

Z eKriltittattstta)

{ri}
and if we do the sum over r; = £1

z Z o [eK(t1—|—t2+t3+t4) + efK(t1+t2+t3+t4]
{ti}

where t; — t4 are the nearest neighbour spins to each r;.

i.e. partition function is the product of many similar terms to that.

Now re-label the remaining spins S;. Our renormalization condition is:
[eK(51+52+53+54) + e*K(51+52+53+54)
— fe{%(SlS2+5253+SSS4+S4SI)+K2(5153+5254)+K351525354}.

This must hold for all possible values of S, S92, S3 and Sy
e.g. all §; =41 or all = —1 gives:

64K +674K — fe2K1—|—2K2—|—K3
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and other possible combinations:
92— fe_2K1+2K2+K3;
eZK + 6_2K — fe_KS;
2= f672K2+K3.

Note S; are spins on the new lattice. Hence nearest-neighbour terms like S1.59 will appear in
one other square bracket. This gives a factor of 2 so that total contribution from S; and S5 is

GKISISQ-

In all, for N spins on original lattice

Z=f(K)"? Y exp{K1) SiS;}+ Ky Y. SiS;j+ K3 > SiSiSiSi,

states (i) ((2,5)) k1
where:

1 1
K, = 1 In cosh(4K); Ky = 3 In cosh(4K)

1 1
K3 = 3 Incosh(4K) — 2 In cosh(2K).

Solutions to Exercises E

. For this you need to draw the graphs as discussed in Section 3.1.5.

. Take z = 0 on the central plane, with n,(0) = n_(0) = ng (say). Generalise (3.22), (3.28):
first n(z) = nge °?/¥T and second (for positive and negative charges) we have

en(z) = e(ny —n_) = eny (0)e™**/*T _ en_(0)e*/*T

= —2eng sinh{e¢/kT'}.

Take Poisson’s equation as

d%¢ .

i 4dmwen(z) = 8mweng sinh{e¢/kT'}

2
~ &FETWP as ep K KkT.
and from (3.31)
2¢ 4re’ng 1/2
:g; where Ip = T .

The solution of this differential equation can be written as
¢ = Asinh(V2z/lp) + B cosh(v2z/1p).
With boundary conditions ¢ = 0 at = = 0, it is easily seen that we must have B = 0. Also,

¢==+1/2V at z=+a,

% Voo
A=t -
2 sinh(v/2a/1p)
and
6= V. sinh(v/2z/Ip)

2 sinh(v2a/lp)

Substitute back into the expression for the space charge:

(z) ~ —2e2ngp  —e?ny  sinh(v2z/lp)
MEETHT T TRT T sinh(VRa/ip)
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3. Equilibrium magnetization corresponds to minimum free energy. From Section 3.3.2.

dF
—— = 24,M +4AM? =
dM oM 4444 0
= 249(T —T,)M + 4A, M3,
hence:
M =0or M? ~ (T —T,)
thus
M ~ (T —T.)'* ~ 0}/2,
and so

B=1/2.

To obtain v and § add a magnetic term due to external field B :

F = Fy + Ay(T — T,)M? + Ay,M* — BM

therefore
;—AZ = —B + 249 (T — T.)M + 4A4 M3 = 0.
For critical isotherm, T = T, and so B ~ M3, thus: § = 3.
Now
=27
OB )

to differentiate both sides of equation for equilibrium magnetization w.r.t B :

oM oM
1=2A9(T —T,) 8—B)T + 1244 M? 8—B>T

and .
X = (2A2TCHC + 12A4M2) =y=1

Solutions to Exercises F

1. In Chapter Four we derived the result for the closed Ising chain as eqn (4.20) which may be
written in the form:
Zy = 2V coshV K (1 + tanh™ K) .

In the case of the open chain, the only graph with an even number of vertices is the zero-order.
Hence the above result becomes

Zn = 2N coshV 1 K.

Note that in the case of an open chain we have P = N — 1 as the number of pairs of lattice
sites.

2. By definition:

(SmSn) = Z5'Y SmSpe PH

{s}
= 25" ) SmSn [ 555
{s} (i.4)

The argument proceeds as for the partition function, and using the identity given as eqn (4.4):

(SmSn) = Z]T]l cosh? K Z H<i’j>SmSn(1 + ’USZ'S]')
{5}
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Figure 1: .

where P = N of nearest-neighbour pairs.

Now introduce lattice graphs in one-to-one correspondence with the terms in the expansion.
As before, require every spin in a product is to be raised to an even power to have a non-zero
contribution. But as have factor S,,S,, for these two sites we require an odd power of the
spin.

Hence we replace g(r) in the expansion for the partition function by fp,,(r), where fi,,(r) is
the same as g(r) except at sites m and n.

Consider a linear Ising chain. P =N — 1.

For an open chain there are no closed graphs and hence the only contribution to the partition
function would be the zero-order graph.

therefore
ZN = 2N coshV 1 K.
(Compare to the result in Section 4.2 for the closed Ising ring.)

Because of the factor S, S, the v term doesn’t contribute to the correlation. The only
non-vanishing contribution is from the term shown in the figure.

Note
(1) all connected vertices except m and n are even
(2) vertices m and n are odd.

This term has n — m vertices and is therefore of order |n — m]|.

P
SmSn) = Z3lcosh” K2V fon(r)v”
N

r=1
-1
= (2 cosh™ ' K) " (2" coshV LK) pinm
therefore (S, S,) = oMl — tannln—m K

. The Van der Waals equation takes the form

<P+ %) (V —b) = NKT,

where a/V? represents the effect of mutual attraction between molecules and b is the ‘excluded
volume’ due to the finite size of the molecules. The equation is based on a model where ¢(r)
is taken as corresponding to a ‘hard sphere’ potential for r < d, but is weakly attractive for
r > d.

From eqns (4.63) and (4.58) we have
1 1
e —¢(r)/kT _
BQ— 2I2— 2/dr[e ].,

and, on the basis of our assumptions about ¢(r), we may make the simplification

e M/T ~ 0 forr < d;
~ 1—¢/kT, forr >d.
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Then, dividing the range of integration into two parts, we obtain

/47rr2d+ / 4mr?? d_B AJKT,

where

2rd>
B:”T:zwo,

where vy = volume of a molecule, and

[e.e]
A= —27r/ r2p(r)dr
d
Now, from (4.62) and these results, the pressure is given by

NET N A
p=2 g (B-7)]

Let us define the Van der Waals constants as:
b= 4Ny,
which is the total excluded volume of N molecules, and
a= N24,

which is the total effect of interactions between all possible pairs. Then the equation for the

pressure becomes

p_ NkT+NkT b a
v v Vv

o NET 1
P+ =~

V2 Vo1-b/V’
where the interpretation in terms of a first-order truncation of the binomial expansion is
justified for small values of b/V. Then multiplying across, and cancelling as appropriate, yields

(P + V2> (V —b) = NKT,
as required.

. From (4.63) and (4.58),

By = —% /d37”f(7”)

The hard sphere potential satisfies

O(r) =00 1< a

=0 T > a.

Hence f(r) satisfies:
flr) =-1 r < a;
=0 r > a.

Thus the integral becomes:




as required.

For Bs, start by doing the integral with respect to r', thus:

H(r) = [ a6 f (e - )

The integrand is —1 x —1 = 1 for 7/ lying within a sphere of radius a centred on the origin and
also within a sphere of radius a centred on 7' = r. Thus H(r) is the volume of space occupied
by the two overlapping spheres, and by symmetry consists of two spherical ’caps’, on each side
of a plane through ' = r/2.

Let p be a coordinate lying between r/2 and a, corresponding to one half of the volume of
intersection. Then it is easily seen that

Finally,

as required.

. The relationship has been written to make the problem look more difficult. Start by inverting
it:

NNG=3) Z(AT, A3/"V) = Z(T, V).

The right hand side is our starting point: from eqns (4.31), (4.32), (4.33) and (4.34) we have

Z(T,V) (27rka)% /quexp

1
~ hNN!

B .
KT 4 lai — g™ |

where we have substituted the given potential. Look at the Boltzmann exponent first. We
want T' — AT, so we make the change of variables:

qQ; = Al/nx’i ’

and the exponent becomes:

A 1 1

A
k_Tg (/\1/n|x, —.Tj‘)n N _kATg |XZ' —Xj|n '

Now look at the other consequences of the change of variable:

dq; = \3/mdx;
V=[dq =N/"[dx; ="V
V! =3y
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Now, ignoring the constant prefactor (b N!)~!, which will cancel across, we have:

Z(T,V) = (2wka)%)\%/deexp

—A 1
kXT Z |Xi — Xﬂ”]
L)

= (27rmk/\T)%)\3N(%_%)/deexp

kXT “ |Xi — Xj|n
L)

= BN 2 Z(AT, A3/mY),

as required.

O s _ _ / ? o O yn g
a.'L' 0

Note that the variable y is necessarily O(3), and expand both sides as power series in 3.

LHS. = 83[1 — BH + (BH)?/2! + .. ]
XL
_ OH p?_0H B20H
= P Tt Tt
A 1 27172
RHS. — —/0 - (B—y)H+ (8- yPH +..]
oH T
X a—m[l—yH—f—EH +...]dy
8 OH 8 dH  OH
= -/ 8—xdy+ ; [(ﬁ—y)H%—l—a—xyH]dy—l—...

8 oH 6 o 6 _dH 6 oH
_ —/ —dy+/ ﬁH—dy—/ yH—dy+/ O Hdy + ...
0o Oz 0 oz 0 dx 0o Oz

B 0H o, OH B2 O0H 20H

B 58w+{ﬂH6:1: 2H3:1:}+ 2 8xH+”'
_ 8H @ _8H [’oH

= L.H.S

7. For the canonical ensemble in the energy representation, we have:

OF — 9 0
_9F E=kT*“—1nZ
Cv 8T) ’ Mg I
1%
where
Z = TrePH

= Tr l1 — BH + 2—|2H2 + 0(/33)]

= lTrl — BTrH + ;T’I"H2 + 0(,33)]

TrH n 2 TrH?
Trl 2 Trl

— T [1 .y + 0(ﬁ3)1 :
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Then

_ 0 pTrH B2 TrH?
_ 2 _ 3
E = kT aTln{Trl [1 Tl T 2 T +0(8°%) |}
0 BTrH ﬁQTrH2
_ 2 3
= kT 8T{lnTT1+lnl T T +0(8%) |}
0
_ 2 o 3
= kT T In[1 — P+ 0(8°)]
2 2
where P — pTrH pB“TrH

Trli 2 Trl’
Expand In [1 — P + 0(8%)] to 0(3%), differentiate (the 8s) w.r.t T and required result follows.

(P+W>(V—b):NkT

Critical point <> inflection of isotherms therefore,

oy - 8_P> 0
oV )p=r, OV?) .

gives conditions.

Re-arrange VdW equation:
NET a

p=_t 2
vy v W
oP —NkT 2a
— | = =0forT =T,V =V,.
8V)T Voo tys -Vt e
Thus:
2a  NKT.
Ve (Ve—b)¥
2a(V, — b)?
;763 = NkTy; (x%)
o*P 2NEKT  6a
= — 22 = 0for T =T,V =V
6V2>T V-b® va 0 Tle @
and
3¢ NKT.
Vi (Ve—b)¥
hence 3a(V, — b)?
a(V. —
‘6/764 = NkT.. (% % x)
Equate LHS of (**) and (***):
(Vc - b)2 (Vc B b)3
2 =
a V3 3a 7z
= V. = 3b.

Substituting for V, into (**) = NkT, = 8a/27b and both V, and T, in (*) = P. = a/27b%.
Set p= P/P., 5 =V/V, and t = T/T..

Hence put P = P.p, V = V.9 and T = T.t in equation (*) and substitute for P,,V, and T, to

get:
8a 1

a
e Se L
(27b2p + ~29b2) (360 —b) = kt27b Nk
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a (. 3 sb (5 1 _8at~
T \PTR) P\ T 3) T

(ﬁ—l- ;—2> (0—-1/3) = %f

and so

. From the previous question:
<ﬁ+ %) (35— 1) = 8i.
Set;
=(P—-PF,)/P, hence p=p+1
v

p—1 P
v = 9-1=(V-=-V)/V, hence V41
t—1=(T-T.)/T. hence t=0.+1

%)2] 3(1 4 v) — 1] = 8(1 + 6).

Multiply through by (1 + v)?, multiply out and re-arrange:

3
2 <1+7§+4v2+3%> = —3v% +860,(1 + 2v + v?)
or 3
p:_§U3+9c(4—6v+9v2+...)+...,
hence oV P. /0 P
v =y (Y :_C<_p) _ L e
v (-VELY) +<ap>T v, v ) = 7,0 0%)
and so

Kr ~ 6, " therefore y = 1.
d. Critical isotherm T' = T, 6, = 0 therefore p ~ v3 hence § = 3.

Note These are mean-field values and Van der Waals is nowadays re-interpreted as a mean-field
theory.

Solutions to Exercises G

. Given )
oM
Xr(Cg —Cp) =T (8—T)
B
therefore \
T (2M
oT
Now C's must be positive i.e. Cpy > 0
therefore X
T (9M
]
Cp > (X; ) (%).

Definitions of critical exponents:
Cp ~ |0f:|_a= X~ |00|_7>

oM _
M ~ (—0,)° = 6—T>B ~ (—6.)P7t.
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Now
(_HC)Q = |96|2

Thus inequality (%) becomes
10|~ > |6,|2B—1+,

Hence
thus

a+28—-24v2>0,
and so

a+20+v2>2.
. The Widom scaling relation is:
G(\N0.,X’B) = \G(0., B).
Differentiate [ times on both sides and re-arrange:
GY(6., B) = \P~1aW(1)7(6,, AP B.
Hence it follows that:

GW@O.B) AP 1GO (X9, \PB)
GU=1(h.,B) ~ A=Lp—1GQ(-1) (A0, \PB)
AGO (X7, \’B)
G(I-1) (A6, B)’

Now L.H.S. =~ 6.2 (from definition).
Also choose \ = 9;1”, thus:
l PR
—-A —1/r r G (17)‘ )
o (6:7) GO e

(=1 (1, ¥ B)
— QC—P/T

therefore A; = p/r, independent of [.

. The mean magnetization M = (S)o and from mean field theory:
(S)o = tanh(BB + 22J5(S)o).
Hence immediately we can write:
M = tanh(BzJM + b) where b = B.

Now mean field theory gives
2B = 1lor zJ =1/8,.

Hence
BM
Be

Set B = 0 and expand for T' ~ T, in which case 6. is small:

M:tanh[ +b]:tanh[M%+b]:tanh[M/(1+9c)+b]-

M 1 M
140 3(1+60)%

1 1 M3
M(1-— =
( 1+96) 3(1+6.)3
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hence

M=0
or ( 0 )3
1+
M? = —30.~——5— = —360,.(1+6,)°.
“(1+46.) e(1+6c)
Taking the nontrivial case,
M ~ | —30,"/2,

and by comparison with the equation which defines the critical exponent:
g =1/2.

. For B =0, we have H = —J}_; ;y SiS; where }_(; jy is sum over nearest neighbours. The
mean energy of the system is given by

E=(H)=-J) (58;).
(i.4)

In lowest-order mean field approximation, spins are independent and
(5i55) = (8i)(S;)-

Hence

where M = (S) = order parameter. From the thermodynamic definition of the heat capacity,
we have

OFE N _dM dM
= — | =-2Jz2—M—=—-JzNM——.
C 8T> B Ty My = AN
For
T>1T, : M =0 therefore Cpg =0;
T<T.,: M=(-30)">.
Hence oM . " 3 50 5
T = o (=30,) P x = = St = it
or (0 X g = M =5 c
and so -
9B\ _3 ponmm—ir = 3TN
or ), 2 2 ¢

:gNk as Jz = kT..

Hence Cp is discontinuous at T' =T, and o = 0.

. From the definition of the susceptibility, we have

oy OM _ oM
™% "o’
and also M M
= ~ f T>T,.
M tanh(1+ec+b) 1+06+b or > T,
Now

M — =b
1+6,
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to this order of approximation and, re-arranging, we have:

146,
M = b.
(%)
Hence oM )
XT % 9—6 as 00 —0
and so

Xp ~ 607", v =-1.

Consider the effect of an externally imposed field at T' = T, where 8. = 0, and so 1 + 6, = 1.
Use the identity:

M = tanh(M + b) = (tanh M + tanh b)(1 + tanh M tanhb)

1R

M3 b
(M -5 +b— E) (1 + tanh M tanhb)

Cancel the factor of M on both sides and rearrange, to obtain:

M3 v M3 b3 Mb>  Mb3
b~e — +—— | M —— 4+b— — | [Mb— —— — 4 ..
3 +3 < 3 + 3)( 3 3 + )

therefore b ~ M3 /b for small b, M : hence § = 3.

If we set b ~ M? on the right hand side, we can verify all terms of order higher than O (M?)
are neglected.

. From eqn (7.72), the maximum free energy is:
1
F=Fy,— §NzJ<S)§ + B'N(S)o

where

B'=Bu—B; Fy = % In[2cosh (8Bx)]: (S)o = tanh (8By) .
Substituting as appropriate:
F= % In [2 cosh (8Bg)] — %NthanhQ (BBg) + N (Bg — B) tanh (8Bg) .
The variational procedure gives:
(Bg — B) = 2J(S)¢ = zJ tanh (6BEg) .
Rewrite this as

Brp — B
zJ

tanh (8Bg) =

and substitute into the expression for F :

—N 1 Bp — B)? Bp —B
F = 7ln[2cosh(5BE)]—ENZJ%-FN(BE_B)( EZJ )
= % In[2cosh (BBg)] + % (Bg — B)?,

as required.
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7. Here we repeat the previous calculation with the generalization that the external magnetic
field is no longer a constant but varies from one lattice site to the next and is denoted by B;,
for the ith lattice site.

It follows that the effective field By — Bg) and the molecular field B’ — B; also. Some of
the key relationships also generalize straightforwardly, thus:

Fp=—f"'YIn [2 cosh (ﬂBg@)] , (1)
and )
(S;)o = tanh (ﬂBg)) . 2)

Then, from (1) and (2), we may easily obtain:

i%zgﬁm 3)

Next we take eqn (7.68) with the equality and generalize to the nonuniform case, thus:

F=F - Z Jij(SiS;)o + Z Bi(Si)o, (4)

and, with an obvious generalization to the inhomogeneous case,
F=F-— z Jij(SiSj)0 + z (Bg) - Bi) (Si)o- (5)
%,J %

As before, on the unperturbed model, we treat the spins as independent. Reminding ourselves
of the properties of the double sum, we may write:

Z%SS ZZ (6)

where (j) denotes ‘sum over the nearest neighbours of each 7 .

Now we carry out the variation, differentiating F' as given by (5) and (6), with respect to Bg),

thus:

oF J )
oBY Z Z 0B ’) Z Z aB

Two points should now be noted:

(a) From (3), we see that the first term on the right hand side cancels the last term, just as
in the homogeneous case.

(b) The second term involving the double sum vanishes because 9(S;)o/ (9B(Z =0 for j # 1,
and j is never equal to 3.

Then, setting 0F /0B, 0 = = 0, and equating coefficients of 9(S;)o/ 8Bg), we obtain the condition

for an extremum as: .
Bg) — B,’ = JZ(S]>0 (8)
@

We may further write this condition in the useful form:

By — Bi=JY tanh (8BY)), 9)
)
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where we have substituted for (S;)o from (2).
We may conclude by writing down the optimal form of the free energy. From (5) and (6),
along with (1) and (2), this is:

1 (i) 9

F = ——> In|2cosh (8B tanh tanh (BB
5 2 [2eosh (3B7)] - ZZ (855) tans (85)
+ Z( — B;) tanh (8BY) . (10)

Then substituting from (9) into the middle term we have

F= _% gln [2 cosh (531(32))] +

Note that this result is not a simple generalization of the result of the previous problem.

%Z (BY — B:) tanh (BY). (11)

1

. Mean-field approximation:
N
H=—(B+zJo))_ S
i=1

where
o=(S;).

The partition function factorizes into a product of N single-spin partition functions, each given
by:

t .
Z1 = Z e®S = W’
=, sinh[z/2]
where
z=p(B+zJo).

Obtain a closed equation for o by working out

At B=0,
1 1 1 1
= (t+ 5) coth [(t + 5) ﬁzJa] —3 coth (iﬂzJa) .

By considering the form of the solution, conclude that there are non-zero solutions for ¢ where
the slope of this function at o = 0 is greater than unity:

t
(+)ﬁJ>1
3
or
tt+1)2J
T<T, = —.
SheET3%
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For the Ising model, take t = % Denoting Ising values by an overbar, define S; = 2S;, such
that S; = +1 and

o= <§z> =20,
along with J = J/4, to give the correct interaction Hamiltonian. With these changes we find

o = tanh(B2zJ 7),

and

. Take:

H=—qJo) Si.2—h) S;a.
i i

Here ¢ is the coordination number of the lattice; normally we use z but that would cause
confusion with the coordinate of the same name.

The scalar product projects out the component of S; in the z direction and we denote this by
S%.

H=—(h+qJo)> S;.

Zy =7V,
where:

Z1 =2m /7r sinedeeﬂ(than) cos @
0

Make the change of variables:

cos = pu, sinfdl = —dpu,

-1
A — _27T/ dueﬂ(’H-qUJ)u
1

= 27 /1 du ePlhtqad)p
-1
27
= 2% |Blhtqad) _ —B(h+qo])
B(h+qol) [e ¢ ]

— m sinh[3(h + go J)] .

Mean value of spin:

34



10.

. (9an1

g

o(Bh)
For spontaneous magnetization, take h = 0, and consider
1
o = coth(ao) — —,
ao

for a = fBqJ.

= coth[B(h + qoJ)] — [B(h + qoJ)] ™

Plotting the two sides of the equation, we see that it has non-zero solutions when:

d 1 a
— h - — =—>1.
7 coth(a o) aol .73 >
Or when
T<T.=qJ/3k.
The solution to this problem is essentially Section 7.8.
Solutions to Exercises H
o w+y)? 1): r_ Y@ty
(z +y)(1 +zy) ’ (1+zy)
0x1
(z*,y%) = (0,1) Eqn(l) — 0= = 0 eqn(2) —
0x1
ey =(0,0)  Faa(l) 50=""2=0  cqn(2) -
1(1 + y)?
zx=1,0<yx<1 Egn(1 — 1= 97
<yx < qn(1) 11y

Yy

r=1T=00;y=0, B=oo,y=1, B=0,

therefore ferromagnetic fixed point is (0,1).

Linearise (1) and (2) about 2’ =2 =0, ¢y =y = 1.

z(l+1)?
(1)5[3/:—‘ =4z — — — (a)
(0+1)(1+0) v=lorso
y(0+y) 2
2)y = =V~ =y
@) 1+0 lz=o,,
Set
y—1 = &y thus y =0y +1
y—1 = dy thus y=0dy+ 1.
and so
(2) = 6y +1 = (6y + 1)? = 2ydy + 1 + 6(5y?).
and

dy' = 2ydy/y = 1 = 26y — — — (b).
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From (a) and (b)

! 4 0\[=z
- M E. 1 = 4 = 2.
<5y’> (O 2) <5y> igenvalues A1 , A9

A = bV, b=2; wehave: yi =2, y2 =1

From

— ) {KSi(Si—1+8i41)+22S;_1+8BS;+L2 5,11 +20)
Z IIi—. 246,.€ :
{s}

Do the partial trace by summing over So = +1,5, = £1....

z S Mg I:e{K(Si—1+Si+1)+/HB+BTB(Si—1+5i+1)+20}
...51,53,55...
+ e{—K(Si—1+S¢+1)—ﬂB+BTB(S¢—1+S¢+1)+QC}

Re-label spins so that they are again numbered consecutively:

z ZHZ' [e{(K+ﬁTB)(Si+Ss+1)+,BB+ZC}
{s}
n e{*(K*BTB)(SHSM)*BBHC}] (A

Require that new partition function should be same as old but with new coupling constants:

ZI — zHie{K’SiSi+1+ﬂBlSi+C’} o (B)
{s}

Obviously, equations (A) and (B) are consistent if:

K SiSit1+6B'Si+C'} A (K+EP)(Si+8i41)+5B+2C}

1 A (K=E)(Si+Sit1)-pB+20}

Equating exponents for S;, S;+1 = 1 yields 3 equations:

! ! !/ _
S, Siz1=1: K HBB +C" _ 2K+2B+2C | ,—2K+2C
! ! !’
Si, Siy1 = —1: oK' =BB'+C' _ 2K-28B+2C | ,—2K+2C
_ ! ! _
S;i=—=811 ==1: e~ K'+C" _ BB+2C +e BB+2C

These can be solved to yield:
2B = 2B cosh(2K + BB)/ cosh(2K — B).

¢*®" = cosh(2K + BB) cosh(2K — BB)/ cosh? 8B.
20 — 8C cosh(2K + BB) cosh(2K — BB) cosh? 8B.

. Given
K'=2K? + L; L' = K?,

at the fixed points we have

K* =2K*? + L*; L* = K*2. (12)

36



It is easily verified that the fixed points are (K*, L*) = (0,0), (00, 00) and (1/3,1/9). The first
two are the high-temperature and low-temperature points and are trivial. The non-trivial
fixed point is (K*, L*) = (1/3,1/9) and we linearise about this. Set:

K' = K*+40K'; L'=L*+ 6L

K = K*'+/K; L=L"+4L. (13)

Eqns (12) become:

SK' = 4K*0K + 6L+ (2K*2 — K* + L¥)
L' = 2K*0K + (K*? — L*?).

Hence:
0K'\ [4K*1\(6K\ (4/31)\ (K
SL' )] \2Kk*0)\dL) \2/30)\dL)
= eigenvalues A = %(2 +1/10)
therefore

A1 = 1.722; Ay = —0.390.
For the critical exponent v we have
v =1/y, where \; = b¥, b= /2.
Hence
Inb In(v/2)

"Tia In(1.722)

. Consider a lattice with probability p that any two sites are connected by a bond.

Two or more sites connected = cluster, and the critical probability p. is the probability of a
cluster spanning the lattice.

For p < p., probability of any two sites distance r apart being connected is P(r) such that
P(r)—»0 as r—oo for p<p,.

Introduce correlation length by writing asymptotic form: P(r) ~ I="/¢ as r — oo, where

&(p) = correlation length. Draw analogy between p in this model and temperature in Ising
model. As p — p., correlation length— oo, define critical exponent

E~(p—pe)” as p—pe.

Construct a new lattice by placing sites at centre of each unit cell of (original) p-lattice.

Put bonds connecting any two sites not connected on p-lattice. New lattice is identical to old
lattice but has bonds with probability

g=1-p.
Call the new lattice the g-lattice.

If p > p., then at least one continuous path across the p-lattice but construction rules forbid
this on the g-lattice.

If p > p. then g < g; and conversely if p < p. then g > g.. Therefore if the p-lattice is critical
so also is the g-lattice. Therefore g = 1 — p. and as the lattices are identical, g. = p.. Hence

pe=1/2.

(a) Coarse-graining transformation. Remove alternate sites from the lattice and draw a new
bond if there were at least two bonds connecting those particular sites on the old lattice.
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(b) Re-scaling. Reduce all lengths by b = /2. New lattice is rotated 7/4 to old one: new
bonds lie along old diagonals.

Three configurations can contribute

* p(a) =p*

e p(b) =p°(1—p)

e p(c) = p*(1 —p)?
and so

P =p" +4p*(1 —p) +2p°(1 —p)> = 2p”> — p".
At fixed point, p’ = p,
RGE — p* =202 +p=0
or
plp—1)(p* +p—1)=0=p* = 0,175,

We reject — 2‘/5, asp > 0.

px = 0 = no bonds p* = 1 = all sites bonded.

Therefore trivial and analogous to high and low-temperature cases in thermal systems. Con-
clude critical fixed point is p. = p* = (v/5 —1)/2 ~ 0.62.

At fixed point, RGE becomes

*

p
Set p' = p* + dp’, p = p* + Ip, then

* * * * 5 *
5p' +p* =2(p* = p)® — (p +<5p)4=2p2(1+p—],f)2—p4(1+—)4

and to first order in dp
3p' = 4p*(1 —p?)op = bp' = Ay(p*)ép.
As this is a single-parameter space, there is only one eigenvalue, as A is a scalar,
A= 4p*(1 — p*2)

and as p* = 0.62, \; = 1.53.
As b= /5, we have the critical index y; as

_In)A;  Inl.53
o= Inb Inv2

and recalling that v = 1/y1,

B Inv2

V= S 0.82.

R Solutions to Exercises 1

1. Imposing the conditions for the fixed point on the given equations:

AZ\*

= 2u* — 2

0 uro+ 16,2 + O(€?)
. 3)\*2
0 =X~ 16
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Solving the second equation,

1672

A* =0or \* =
or 3

€.

Substituting the second of these into the first equation

2

W= o e 0(e),
6
Hence (p*, A\*) is given by
A2 1672
——€ €
6 7 3 7
as required.
To linearise, let
A=A 40
poo=pt+op

and with a few lines of routine algebra

A2
ddp ::<2__5)5u4————-<1+-5>5x

dInb 3 1672 6
jl(snAb = €0
Writing this in the form
dép
W | = A (?;)
dInb

A2
A= | 273 gz (F%)
0 —€

From which we conclude:
€
y1:2—§>0, Yo = —€<0

Hence this is a mixed fixed point and determines critical behaviour for ¢ > 0 and d < 4.

Critical exponent v is obtained from

therefore

as required.
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2. Given:
P =0p+c(b® —b)q+ 0(pq)

Fixed point (p*, ¢*) = (0,0).

Linearising about the fixed point, RGT transformation matrix is:

b? c(b? — b€
(B )

with eigenvalues and eigenvectors:
_p2 1 _ 1
)\1 =b € = (0)
Ay =b¢ e =(9.

From \; = b} ; Y1 =2, yo = €.

For a mixed (critical) fixed point in this case must have y» = ¢ < 0: hence d > 4. Hence given
fixed point is a critical point for lattice dimension greater than d = 4. Given information
implies this model is in same universality class as the mean field theory of Ising. Hence
indicates possible validity of the mean field theory above d = 4.
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