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genome regulation has never been clearer. But in spite of the

enormous technological advances to probe chromatin

organisation in vivo, there is still a lack of mechanistic

understanding of how such an arrangement is achieved. Here we

review emerging evidence pointing to an intriguing role of nuclear

RNA in shaping large-scale chromatin structure and regulating

genome function. We suggest this role may be achieved through

the formation of a dynamic nuclear mesh that can exploit ATP-

driven processes and phase separation of RNA-binding proteins

to tune its assembly and material properties.
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There has been a dramatic increase in the number of

studies directed at understanding and quantifying large-

scale chromatin organisation in the cell nucleus. Many of

these adopted methods based on FISH or chromosome

conformation capture (3C) [1], nowadays virtually indis-

pensable to obtain high-resolution data on genome archi-

tecture. Yet, these tools are oblivious to the mechanistic

causes dictating specific chromatin conformations. Thus,

alongside the development of 3C-based methods, there is

still an urgent need to develop experiments and models to

shed mechanistic insight into the key molecular players

that shape chromatin structure. One promising element

in this picture is RNA: while its textbook role is that of

facilitating the translation of the genetic code into pro-

teins, there is a surprising lack of understanding for the

existence, and the functional role, of a large mass of RNA

which is retained in the nucleus in interphase (hereafter

“nuclear RNA”). One of the best known examples of this

alternative form of RNA is that of Xist, which is known to

play a crucial architectural role in silencing the inactive X

[2]. This prominent example is also highly descriptive of

the common approach towards RNA-mediated chromatin
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genomic loci. On the contrary, recent evidence suggest

that the role of nuclear RNA is spread at genome-wide

level and should be addressed as such. In this article, we

review recent attempts to advance our understanding of

genome-wide chromatin regulation and organisation by

nuclear RNA and finally discuss emerging views relating

nuclear RNA to chromatin decompaction and transcrip-

tion micro-environments.

From static nuclear matrix to dynamic nuclear
mesh
Nuclear extraction experiments in the 20th century sug-

gested the existence of an extensive “nuclear matrix”

which would permeate the cell nucleus even in the

absence of chromatin [3] (Figure 1a). These experiments

were performed in extreme conditions and no definitive

proof in support of such static nuclear-spanning structure

could be provided using more physiological approaches.

Even though the idea of a static nuclear-spanning matrix

contributing to chromatin organisation is now abandoned

and largely surpassed, these experiments provided first

evidence that nuclear proteins and RNA could play an

architectural role in large-scale chromatin structure.

The family of heterogeneous nuclear ribonucleoproteins

(hnRNP) was found to have a key role in forming the

nuclear matrix and, in particular, scaffold attachment factor

A (SAF-A, also called HNRNP-U) was identified as one

sub-family of proteins with the highest affinity to scaffold

attachment regions in the genome [4]. This protein is found

across many cell types and its mutations have recently been

associated with severe neurological disorders [5] and cancer

[6]. HnRNPs are known to interact with nuclear RNA, in

turn regulating the stabilisation and maturation of mRNA

[7]; yet, their role as architectural elements of the genome is

still poorly understood.

One recent development in this direction was the sug-

gestion that nuclear RNAs can themselves act as regula-

tory factors and nuclear organisers [8]. For instance, long

non-coding RNA (lncRNA) has been suggested to facili-

tate enhancer-promoter looping in cis, thus up-

regulating the expression of nearby genes [9]. Other

non-coding RNAs such as XIST, FIRRE and COT1

are abundant in the interphase nucleus. COT1 associates

with euchromatin in interphase and is thought to maintain

its decompacted state [10,11]; FIRRE and XIST co-

localise with the inactive X-chromosome and determine

its trans-chromosomal interactions [12,13]. Many

lncRNAs are known to interact with hnRNP proteins,
www.sciencedirect.com
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Figure 1

(a) Sketch of the original concept of static nuclear matrix made of

hnRNP proteins and RNA. (b) New model based on nuclear RNA and

SAF-A forming a dynamic, localised and recyclable scaffold which

organises large-scale chromatin folding.
and in particular with SAF-A [12,10,14], yet the functional

relevance of this interaction is not clear. A crucial element

in this picture was added only recently by showing that

SAF-A can regulate chromosome structure through inter-

action with nuclear RNA [15��].

A role for nuclear RNA in regulating chromatin structure

is not well established, however much RNA is not

exported to the cytoplasm (e.g. spliced out introns, other

nuclear RNA species) and must presumably be degraded

in the nucleus [16]. This implies that any nuclear struc-

ture that is assembled employing RNA cannot be static

but constantly recycling degraded RNA with newly

synthesised ones. In light of this, the original concept

of a static nuclear matrix must be re-evaluated in terms of

a dynamic scaffold possibly made of hnRNP and nuclear

RNA that interfaces with the three-dimensional chroma-

tin structure (Figure 1b).

Global regulation by nuclear RNA
HnRNP proteins have been shown to associate non-coding

and intronic RNAs [17,18]. For this reason, one may spec-

ulate that the self-assembly of a dynamic nuclear mesh
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would not be restricted to specific loci in the genome, but

could be a general mechanism to regulate local chromatin

architecture near actively transcribed loci. Regulation of

transcription and chromosome structure by nuclear RNA is

a long-standing topic [19,20] and both coding and non-

coding RNAs have been postulated to possess a generic

structural role in chromatin architecture for a long time

[21,19,22]. Yet, a mechanical model linking transcription,

nuclear RNA and hnRNP proteins is still missing. Here, we

propose that hnRNP, and SAF-A in particular, guide the

self-assembly of a dynamic RNA-based mesh (Figure 1).

The precise mechanism of this self-assembly is still unclear

but recent evidence indicates that SAF-A can switch

between a monomeric and an oligomerised state upon

ATP binding, and in the presence of RNA [15��]. In line

with this finding, another study performing HiC and

DamID in mouse hepatocytes after SAF-A depletion

reports a global condensation of chromatin and compart-

ment switching leading to an overall reduction in chromatin

contacts [23�]. While the model of a self-assembled

dynamic mesh is intriguing, it may be over-simplified.

For instance, one element in this picture that is missing

is the observation that hnRNP proteins often display

intrinsically disordered regions (IDR, also known as low

complexity domains [24]). As a consequence, they can

undergo phase separation under a range of physiological

conditions [25], i.e. they can convert from a mixed and

uniform state into a demixed one whereby (spherical)

condensates display higher internal density than their

surroundings. The functional role of this phenomenon,

whether relevant for regulating nuclear organisation,

remains unclear and a topic of intense research [26].

Phase separation and nuclear RNA:
compartments without boundaries
The eukaryotic nucleus is a complex and heterogeneous

environment in which a multitude of biological processes

occur simultaneously. One requirement for the viability of a

cell is that these processes should not interfere with one

another: one way to achieve this is to compartmentalise

operations [29]. By staining different proteins, one can

readily see a plethora of sub-nuclear structures, including

Cajal bodies, nuclear speckles, RNP granules and nucleoli.

These structures appear as nuclear compartments without

boundaries [30�] and some of them require RNA to be

formed [19]. One increasingly mentioned mechanism

through which these structures can assemble is via phase

separation [31–36]. This is a topic of current debate which

has been recently well reviewed (e.g., Refs. [26,37],[30�])
and recent evidence suggest that this phenomenon may

play important regulatory roles in transcription[38,39],[40�].
Here we emphasise the potential different types of phase

separation of nuclear proteins. In one case, also called

liquid-liquid phase separation [30�], clusters of proteins

coarsen to form a condensate by weak mutlivalent self-

attraction (Figure 2a). This might be the case for phosphor-

ylated HP1 which associates in vitro to form droplets [36]; in
Current Opinion in Cell Biology 2019, 58:120–125
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Figure 2

(a) Liquid-liquid phase separation via protein-protein interactions yields membraneless bodies which become spherical driven by surface tension.

(b) Polymer-polymer phase separation via protein-chromatin interactions yields membraneless aggregates of proteins containing chromatin in their

interior (TF = transcription factor). (c) Thermodynamics-driven droplet coarsening and Ostwald ripeninig [27]) yields slowly or non-recoverable

droplets under FRAP. (d) Non-equilibrium arrested phase separation via ATP-switch [28��] yields non-growing droplets whose constituents are

ever-recycling: via FRAP they appear as recoverable bodies with free diffusing and bound sub-populations of proteins.
the other,proteins thatcan multi-valently bind tochromatin

segments are effectively attracted to one-another through

entropic forces, even though they display no self-attraction

[41] (Figure 2b). This polymer-polymer phase separation

[30�], or “bridging-induced attraction” [41], drives a type of

demixing which requires a polymer substrate, such as

chromatin, in order to occur. This pathway is thus more

difficult to prove in vitro as it requires a model of synthetic

chromatin. Very recent evidenceappear tosuggest thatboth

pathways can take place in vivo [42]. Additionally, ubiqui-

tous transcription factors that are known to bind chromatin,

such as Polycomb Repressive Complexes or HP1, may be

conjectured to give rise to nuclear bodies through bridging-

induced attraction in vivo [43].

While some nuclear bodies show liquid-like properties such

as coarsening (Figure 2c), their behaviour cannot be fully

described by thermodynamic models [29,44] and account-

ing for the constant influx and consumption of ATP is thus

required. The role of non-equilibrium processes on the

formation, and phase separation, of membraneless nuclear

compartments is only starting to being addressed (see
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Figure 2d) [28��] [45�] [46�]. Mathematical models show

that the consumption of energy via ATP consumption can

arrest thermodynamics-driven full phase separation and can

stabilise a state in which proteins form micro-phase sepa-

rated aggregates, i.e. a multitude of non-growing droplets

with finite size and made of ever-recycling components

(Figure 2d).Suchasituation isnotachievable inequilibrium

systems, where thermodynamic coalescence and Ostwald

ripening (Figure 2c), the same controlling the demixing of

oil in water, would push the system to minimise the inter-

face between different phases [27,47].

A recent intriguing development in this picture is that

RNA plays a non-trivial role in determining the phase

separation properties of a multitude of proteins. In par-

ticular, low concentration of RNA appears to promote the

phase separation of RNA binding proteins or proteins

with intrinsically disordered regions such as FUS [48��]
and hnRNP [49].

As mentioned previously, the hnRNP family of proteins

possesses RNA-binding domains and SAF-A also has an
www.sciencedirect.com
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Figure 3

(a) The self-assembly and renewal of a dynamic mesh is driven by

nuclear RNA (e.g., introns and lncRNA) and SAF-A. In turn, this mesh

may facilitate transcription by recruiting or trapping transcription factors

(TF). (b) The mesh is dynamic, so that it changes in time (fluid-like) but it

is resilient to acute mechanical stress (solid-like). Mechanical stress that

is prolonged beyond the time-scale of the network renewal affects the

structure and hence its function (e.g. can no longer recruit/trap TFs).
AAA+ domain with ATPase activity [15��]. This suggests

that its phase separation properties are expected to be

dependent on both RNA and ATP. While far from being

characterised in full, we hypothesise that the phase separa-

tion phenomenology of RNA-binding proteins with

ATPase domains will be more pervasive than those of other

non-ATP-consuming proteins such as HP1. The charac-

terisation of these features, and the understanding of their

implication on biological processes, chromatin organisation

and the concept of dynamic mesh presented above, remain

an exciting challenge for the near future to be tackled via

experiments and non-equilibrium mathematical models.

Micro-phase separated hydro-gels defend
transcription micro-environments
The bimodal nature of SAF-A, i.e. displaying both a

specific RNA-binding domain and an intrinsically disor-

dered region which can drive phase separation through

non-specific interactions [25], is particularly suited to the

assembly of a localised structure that must resist strain,

such as a phase separated (hydro-)gel. In this model, SAF-

A is locally concentrated via phase-separation and it then

forms oligomers in presence of RNA; these elongated

fibres then cross-link together to form a resilient mesh

with high internal water content. At the same time, SAF-

A also displays ATPase activity which appears to trigger

its de-oligomerisation [15��]: this is expected to affect the

material properties of a hydro-gel so to make it effectively

fluid on time-scales much longer than SAF-A (de-)oligo-

merisation and effectively solid, or resilient to stress, on

shorter time-scales (Figure 3).

While this model remains to be proved both in vivo and in

vitro, it is tempting to connect it to other recent findings.

Indeed, SAF-A depletion has been shown to mainly affect

euchromatin compaction and to leave heterochromatin-

rich loci largely unaffected [15��], [23�]. Because of this,

we may speculate that a SAF-A based hydro-gel may be

preferentially located at generic active chromatin loci in

turn contributing to maintain their decompacted state

(Figure 3) [50], [51��]. This conformational state can only

be maintained by a 3D micro-environment that can sustain

external stress originating from the natural tendency of

chromatin to self-associate [52–54]. Whether such micro-

environment provides other benefits to transcription

remains to be discovered. For instance, it is tempting to

speculate that the concept of “sticky caves”, seen through

the dynamics of transcription factors such as SOX2 [55],

may reflect the presence of an underlying fractal structure

such as that of a gel nearby to transcriptionally active

chromatin regions (Figure 3). At the same time, we can

speculate that the history-dependent recovery of RNA-

production after repeated stimuli in optogenetic experi-

ments may also be seen as indicative of the assembly of a

micro-environment that promotes transcription after the

first stimulus [56�]. Additionally, recent evidence suggest

that transcription inhibition leads to a reduction in
www.sciencedirect.com 
chromatin dynamics [57], which is compatible with the

destabilisation of a 3D micro-environment that involves

nuclear RNA and constrains chromatin motion.

The final proof of the presented model would be to test the

phase separation and material properties of hnRNP pro-

teins and SAF-A in vitro. The “rheology” (from the Greek

“panta rhei”, i.e. everything flows) of the self-assembled

material, whether liquid, solid or something in between,

under different RNA conditions will shed much light into

the functional role of this class of proteins. The biophysical

characterisation of RNA-dependent phase separation

would open a new mechanistic understanding of how

hnRNPs, and other RNA-binding proteins, may regulate

chromatin structure and genome function through the

interaction with nuclear and non-coding RNAs.

In conclusion, we argue that nuclear RNA and associated

proteins, such as SAF-A, are key regulators of genome

architecture which need to be better understood to achieve

a comprehensive picture of nuclear organisation. We

believe that the concept of arrested phase separation via

non-equilibrium (ATP-driven) mechanisms and
Current Opinion in Cell Biology 2019, 58:120–125
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interactions with nuclear RNA is a powerful model to

describe the formation of ever-recycling membraneless

compartments with self-limiting sizes, i.e. nuclear bodies.

Furthermore, we speculate that similar mechanisms may

underlie the self-assembly of a dynamic nuclear hydro-gel

whichsupportsanddefends large-scale chromatin structure

and transcriptionally-active micro-environments.
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A, Jülicher Frank: Centrosomes are autocatalytic droplets of
pericentriolar material organized by centrioles. Proc Nat Acad
Sci USA 2014, 111(26):E2636-E2645.

33. Zhu Lian, Brangwynne Clifford P: Nuclear bodies: the emerging
biophysics of nucleoplasmic phases. Curr Opin Cell Biol 2015,
34:23-30.

34. Feric Marina, Vaidya Nilesh, Harmon Tyler S, Mitrea Diana M,
Zhu Lian, Richardson Tiffany M, Kriwacki Richard W, Pappu Rohit
V, Brangwynne Clifford P: Coexisting Liquid Phases Underlie
Nucleolar Subcompartments. Cell 2016, 165(7):1686-1697.

35. Strom Amy R, Emelyanov Alexander V, Mir Mustafa, Fyodorov Dmitry V,
Darzacq Xavier, Karpen Gary H: Phase separation drives
heterochromatindomainformation.Nature2017,547(7662):241-245.

36. Larson Adam G, Elnatan Daniel, Keenen Madeline M,
Trnka Michael J, Johnston Jonathan B, Burlingame Alma L,
Agard David A, Redding Sy, Narlikar Geeta J: Liquid droplet
formation by HP1a suggests a role for phase separation in
heterochromatin. Nature 2017, 547(7662):236-240.

37. Brangwynne Clifford P, Tompa Peter, Pappu Rohit V: Polymer
physics of intracellular phase transitions. Nat Phys 2015, 11
(11):899-904.

38. Benjamin R. Sabari, Alessandra Dall’Agnese, Ann Boija, Isaac A.
Klein, Eliot L. Coffey, Krishna Shrinivas, Brian J. Abraham, Nancy M.
Hannett, Alicia V. Zamudio, John C. Manteiga, Charles H. Li, Yang E.
Guo,Daniel S.Day, Jurian Schuijers,ElizaVasile,SohailMalik, Denes
Hnisz, Tong Ihn Lee, Ibrahim I. Cisse, Robert G. Roeder, Phillip A.
Sharp, Arup K. Chakraborty, and Richard A. Young, Coactivator
condensation at super-enhancers links phase separation and gene
control, Science (80-.). 361(6400) (2018) eaar3958.

39. Won-Ki Cho, Jan-Hendrik Spille, Micca Hecht, Choongman Lee,
Charles Li, Valentin Grube, and Ibrahim I. Cisse, Mediator and RNA
polymerase II clusters associate in transcription-dependent
condensates, Science (80-.). jul 361(6400)(2018)412-415.

40.
�

Boija Ann, Klein Isaac A, Sabari Benjamin R,
Dall’Agnese Alessandra, Coffey Eliot L, Zamudio Alicia V,
Li Charles H, Shrinivas Krishna, Manteiga John C, Hannett Nancy
M, Abraham Brian J, Afeyan Lena K, Guo Yang E, Rimel Jenna K,
Fant Charli B, Schuijers Jurian, Lee Tong Ihn, Taatjes Dylan J,
Young Richard A: Transcription Factors Activate Genes
through the Phase-Separation Capacity of Their Activation
Domains. Cell 2018, 175(7):1842-1855.

In this paper the authors provide evidence that transcription factors may
regulate gene transcription by phase separating with Mediator.

41. C A Brackley, Stephen Taylor, Argyris Papantonis, Peter R Cook,
and Davide Marenduzzo Nonspecific bridging-induced attraction
drives clustering of DNA-binding proteins and genome
organization, Proc Natl Acad Sci USA E3605-11, 110(38) sep 2013.

42. Shin Yongdae, Chang Yi Che, Lee Daniel SW, Berry Joel,
Sanders David W, Ronceray Pierre, Wingreen Ned S, Haataja Mikko,
Brangwynne Clifford P: Liquid nuclear condensates mechanically
senseandrestructurethegenome.Cell2018,175(6):1481-1491e13.

43. C. A. Brackley, J. Johnson, S. Kelly, P. R. Cook, D. Marenduzzo,
Simulated binding of transcription factors to active and inactive
regions folds human chromosomes into loops, rosettes and
topological domains, Nucleic Acids Res. 44(8)(2016)3503-3512.
www.sciencedirect.com 
44. Zwicker David, Hyman Anthony A, Jülicher Frank: Suppression of
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