
Lecture Notes
Knot Theory and Applications

Davide Michieletto

March 21, 2018



2



Contents

1 Introduction 5

1.1 Historical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Simple Classification of Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Knot Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Minimal Crossing Number . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Alexander-Briggs Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Dowker Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.5 Prime Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.6 Chirality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.7 Unknotting Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.8 Alternating Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Knot Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Torus Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Twist Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 Lissajous Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Simple Classification of Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Linking Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Linking, Twisting and Writhing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Topological Invariants 21

2.1 The Need of Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Reidemeister Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Conway Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Why Polynomials Are Better . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Meaning of the Polynomial Coefficients . . . . . . . . . . . . . . . . . . . 26

2.4 Alexander Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Knot Groups 29

3.1 A brief recap of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Dihedral groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The representation of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The fundamental group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 The fundamental group of the knot complement . . . . . . . . . . . . . . . . . . 31

3.4.1 The Wirtinger Representation . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Seifert Surfaces 35

5 Minimal Surfaces 37

3



4 CONTENTS

6 Surface Evolver 39
6.1 What is Surface Evolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Working Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3.1 Soap Cube into a Soap Bubble . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4 Catenoid Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5 Minimal Surfaces of Links and Knots . . . . . . . . . . . . . . . . . . . . . . . . 44

6.5.1 Hopf Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.5.2 Trefoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



Chapter 1

Introduction

see Davide’s notes + historical introduction, Tait, Maxwell and Thomson + knot diagram +
links + knots as embedding or inclusions

Knots are very much part of our everyday life. In some cases, they are extremely useful:
sailors and climbers need these for their own safety or to secure boats, and can tie a number of
them with little thought. In other cases, knots may instead be quite a nuissance. You may have
found this yourself when needing to reel in a long extension cable, after hoovering a socket-free
area in your parents’ attic, or when having to disentangle your headphones! In this lecture
we will introduce the physics and maths of knots. We will first discuss the classification of
knots into prime and composite, and how to distinguish the first few simple knots. We will
also introduce the concept of knot chirality, of twist and torus knots, and of the unknotting
number. These concepts will be used in the next lecture when we discuss the physics of DNA
knots. Finally, we will discuss a knot invariant, the Alexander polynomial.

1.1 Historical Context

The theory of knots was pioneered by the man who gives the name of the road where this
building is, Peter Guthrie Tait (1831-1901). Incidentally (or not), this building was named after
J. C. Maxwell who was first a friend of Tait (they went to the same school) and then a competitor
(the latter beat him to the chair of natural philosophy in 1859). The two corresponded at length
regarding the theory of knots.

The year 1867 (recently seen the Origin of the species from Darwin and the first colour
photograph from Maxwell) and Tait invites W. Thomson from Glasgow to Edinburgh to assist
an experiment with smoke rings. Helmoltz had theorised that fluid vortexes within an ideal
medium (no dissipation or friction) are stable configurations. The smoke rings in fact bounced
off one another and never mixed or linked together. Thomson associates the smoke rings to
atoms, and coined a new theory of atoms as knotted vortexes of aether. As the smoke rings
did not combine to form differently shaped rings, so knotted vortexes would remain the same
when combining, each defining a different element. Tait was sceptical, especially because one
can create many many knots, many more than there are different elements.

Eventually, Tait was taken by the beauty of knots and set out to create “periodic tables”
of knots. Before him, only Gauss and Listing had been interested in the mathematics of knots
and links.

Tait set his own notation, he would label each crossing and then each knot could be asso-
ciated with a word spelling out the order of the crossing encountered by following the curve.
Obviously, different words might correspond to the same knot, or mirror ones or composites
(see below) so Tait had to do an enormous work to find the genuinely unique words.
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6 CHAPTER 1. INTRODUCTION

Figure 1.1: Tait’s smoke machine.

Figure 1.2: Little & Tait periodic table: knots with 10 crossings.

Tait’s Conjectures

Tait’s conjectures (which we will see later if true or false):

• A reduced alternating diagram has the smallest number of crossings
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• An alternating knot with zero writhe is amphicheiral

• An alternating amphicheiral knot must have an even number of crossings

have been proven 100 years later they have been formulated (in 1980s by Kauffman and Jones).

There are 6 billion 22 crossing knots.

1.2 Simple Classification of Knots

Knot theory is the study of the “placement problem” [4]. In other words given the spaces X
and Y, one wants to classify how X may be placed within Y. If X is S1 (the circle) and Y
is R3 then we have classical knot theory. The question of how to classify knots can then be
reformulated into how can one distinguish different knots? There are two traditional ways to
look at this problem. One studies the “embedding” α : S1 → R3 (or S3 = R2 +∞) the other
studies the “complementary space” S3−α(S1). We will start with the former and then mention
some techniques that can be applied to the latter.

An operational definition of a knotted curve can be given by resorting to our common
experience of taking a piece of rope, tying a knot in it and finally gluing the two ends together.
The knotted rope can be geometrically manipulated in three-dimensional space in countless
ways but, unless we use scissors and glue to cut and rejoin the rope, it is impossible to turn it
into a plain, unknotted ring. The above example builds on our intuitive notion that a rope has
an approximately uniform thickness that forbids the rope self-crossing during the manipulations.
Since all the configurations obtained by deforming the rope preserve the initial knot type, it
appears natural to define a knot as the class of equivalence of configurations obtained by these
manipulations in the three-dimensional embedding space. Going back to our initial question,
how can we distinguish one knot from another? or, how can we classify knots? One popular
way, dating back to Tait is to use knot diagrams.

1.2.1 Knot Diagrams

Ordinary mathematical knots in three-dimensions can be defined as embeddings of S1 in R3 or
inclusions in R3. Knotted one-dimensional curves only exist in 3 dimensions: they cannot form
knots in d=1 or 2 because there are not enough degrees of freedom to tie a knot in these spaces
(try it yourself with a lace flattened on your desk). At the same time, knotted 1D curves do
not exist in d ≥ 4 because crossings can be undone in the 4-th (or higher) dimension, i.e. the
crossings do not represent physical constraints.

Most commonly, knots in 3D are studied by using their projections onto a 2D surface. Hence
we need a conventional way to draw these projections. The most important rules are two: (i)
crossings must be denoted by over- and under-passing lines and (ii) they must be restricted to
a point, i.e. the tangent of the contour at s1 must not become parallel to that at any other
s 6= s1. A diagram with these two properties is called “regular”.

1.2.2 Minimal Crossing Number

By smoothly deforming the three-dimensional knotted curve we start from, it is possible, in
principle, to minimise the number of crossings in a knot diagram, compatibly with the topology
of that knot type. This gives rise to a minimal knot diagram representation of that knot type
having the smallest possible number of crossings ncr

min (see also sec 2).
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Figure 1.3: A regular crossing versus a non-regular crossing and a non-regular knot diagram
versus a regular knot diagram.

Minimal crossing number is used to classify prime knots; the simplest topology has zero
crossing, and is the unknot. The simplest non-trivial knot has three crossings, and is called the
trefoil knot.

Figure 1.4: Two diagrams of the same knot with different number of crossings. The one on the
left displays the minimum number of crossings.

1.2.3 Alexander-Briggs Notation

Although few knots have their own traditional names, such as “trefoil” or “figure-of-eight”, the
vast majority of knots do not have a name. For this reason it is useful to assign a common
notation and language that we will use when talking of knots and links.

There are many notations, but the simplest and perhaps most used is the Alexander-Briggs
notation. It groups knots with same minimal crossing number, ncr

min, and then assigns an
arbitrary subscript that identifies different knots in the same family. For instance the family of
3-crossings knots has one member, the trefoil or 31. On the other hand, the family of 6-crossings
knots has 3 members, the “Stevedore’s knot” 61, the 62 and the 63. Knot tables (such as the
one made by Tait and Little in Fig. 1.2) are commonly used to keep track of this arbitrary
numbering.

This notation can be extended for links, in which case a superscript denoting the number
of components is shows, the Hopf link is 22

1. Composite knots are instead commonly identified
with a hash, i.e. two trefoil knots tied on a rope make up a 31#31 knot.

The number of prime knots existing at a given value of ncr
min can be shown to grow expo-

nentially with ncr
min (is there a simple proof?). This rapid growth is reflected in the fact that

presently available exhaustive knot tables (minimal representations) exist only for knots with
up to 16 crossings.
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Figure 1.5: List of the first 8 prime knots up to six crossings and one non prime knot. The
Alexander-Briggs notation is also shown.

1.2.4 Dowker Notation

This is another notation that can be used to distinguish knots and it descends directly from the
one originally designed by Tait. Quite remarkably, it keeps track of non minimal conformations,
i.e. even knot diagrams displaying a non minimal number of crossings can be reconstructed
from the Dowker code.

To construct this code, consider the regular diagram of the knot and perform this sequence
of steps:

• start from an arbitrary point along the contour and initialise a counter;

• every time you encounter a crossing, assign the value of the counter;

• if the counter is even, then revert its sign (from positive to negative) if you walk “over”
the crossing. Do not change the sign if you walk “under” it;

• At the end you should have assigned 2n numbers (2 per each crossing, one even and one
odd);

• the Dowker code for the knot can be compiled as the sequence of even numbers accom-
panying 1, 3, 5,..., 2n− 1.

As a practical example, see Fig. 1.6. From the picture one can notice that, as they are
drawn, the minimal representation of the right-hand trefoil appears to have Dowker notation
(-4,-6,-2) while the that of the left-hand trefoil (4,6,2). Yet, this notation cannot distinguish
the chirality of knots and in fact both knots can be identified with the code (4,6,2). The simple
proof of this fact is left as exercise.
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Figure 1.6: Constructing the Dowker code for the right-hand and the left-hand trefoil.

Exercise 1

(*) Prove that the Dowker code is insensitive to a knot chirality.
(**) Calculate the Dowker code for the 819 knot. How does it differ from the Dowker codes of
simpler knots?

1.2.5 Prime Knots

What is a prime knot? This is best defined as the opposite of a composite knot. As common
experience teaches us, no knot τ can be untied by introducing another knot τ ′ in a portion of
the closed curve. In jargon, we say that there exist no anti-knots. A further result is that the
resulting knot, τ#τ ′, belongs to a knot type that is different either from τ or τ ′ and is called
the composite knot of the two original knots. The two knots in the sum are called factors of
τ#τ ′. Then, a prime knot is a non-trivial knot that cannot be decomposed as into a non-trivial
connected sum. In other words, if a prime knot τ is equivalent to the connected sum τ ′#τ ′′ this
implies that either τ ′ or τ ′′ are unknots. All standard knot tables, such as the one in Fig. 1.2,
list only prime knots.

1.2.6 Chirality

An important notion in knot theory is chirality, or handedness. Suppose we look at a knot
in a mirror. Is the mirror image equivalent to the original one or not ? As an example let
us consider the trefoil knot and its mirror image in Fig. 1.8. The two cannot be continuously
deformed into one another. For this reason, the trefoil knot is said to be topologically chiral.

For simple prime knots (which are not “alternating”, see below), the handedness of chiral
knots can be distinguished by computing the balance of left- and right-handed crossings in the
minimal diagram. The handedness of each crossing is assigned by the right-hand rule applied
to the oriented over- and under-passing segments as shown in Fig. 1.7.
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Figure 1.7: A right-hand and a left-hand crossing.

If a knot can be continuously deformed into its mirror image we say that the knot is
topologically achiral, or amphichiral. The simplest amphichiral knot is the 41 knot in Fig.1.5
(see Ex. 2 for a proof).

As a curiosity, amphichiral knots are relatively rare. Indeed among the first 35 prime knots
in the knot table less than a 1/4 are achiral (unknot, 41, 63, 83, 89, 812, 817, 818); all 49 9-
crossings knots are chiral and only 13 of a total of 165 10-crossings knots are amphichiral.

Figure 1.8: The trefoil is chiral, i.e. the mirror image of the knot is not equivalent to itself. The
figure-of-eight is amphichrial, i.e. non-chiral. The mirror image of a knot is always equivalent
to its image with inverted crossings.

Exercise 2

(*) Deform the unknot to show that it is not equivalent to a trefoil.

(*) Deform and rotate (but do not reflect) a trefoil to show that it cannot be deformed into
its mirror image.

(**) Deform the figure-of-eight to show that it is amphichiral.
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Here we have also introduced the concept of “continuous deformation”. To be more precise,
equivalence between knots can be defined up to homotopy, i.e. a smooth deformation of their
contours which do not involve cutting the contour. We can indicate equivalence with the
symbol ∼, as in the previous exercise. Deforming curves can be quite messy, for this reason
there have been established a set of “rules” that can be methodically applied to smoothly
deforming knotted curves. These are called “Reidemeister moves” and we will see them in the
next Chapter.

1.2.7 Unknotting Number

Within the minimal knot diagram representation it is easy to realize that one can convert a
knot into the unknot by reversing one or more crossings in the knot diagram. For example the
minimal representation of the trefoil displays only 3 crossings: by reversing one of these, i.e.
turning the under-passing strand into the overpassing one or vice-versa, we obtain the unknot.
In general, for a given knot diagram it is always possible to find a set of crossings that can
be switched over to obtain the unknot. On the other hand, for each knot diagram there can
be several possible choices of crossings that can lead to the unknot. Moreover the number of
crossings required might depend on the diagram. It is then natural to define the “unknotting
number” as the minimum (taken over all possible knot diagrams) number of crossing reversals
needed to turn a given knot into the unknot.

1.2.8 Alternating Diagrams

Prime knots can be partitioned in families according to salient topological indicators, such as
the minimal number of crossings. An important one is the alternating knots, that is knots
admitting a minimal diagrammatic representation where under and over crossings alternate
along the path. In practice, most of the simplest types of knots, that is those with sufficiently
small crossing number are alternating. In fact, all prime knots with crossing number smaller
than 8 are alternating, with the simplest non-alternating instance being the 819 knot.

You will remember that in an earlier exercise we have seen that the Dowker code for the 819

knot is different from that of simpler knots. This is because it is non-alternating, and hence can
display positive and negative numbers in the code, while alternating knots are characterised by
codes with all positive (or negative) numbers.
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1.3 Knot Families

There are three important families of knots that we ought to mention at this stage. These are
the “torus”, “twist” and “Lissajous” knots.

1.3.1 Torus Knots

With the exception of the unknot no other knot can be drawn on the surface of a sphere without
self-intersections. Notably, there is a class of knots that can be drawn as a simple closed curve
on the surface of a standardly embedded (i.e. unknotted) torus. This is the family of torus
knots.

One of the most important properties of this family of knots is that there exists a generic
analytical parametrisation for any knot belonging to this family. In general, one can exactly
describe a curve that winds around the torus p times in one direction, say meridionally, and q
times in the other, longitudinally (see Fig. 1.9) as

x(t) = (r0 +R cos (pt)) cos (qt)

y(t) = (r0 +R cos (pt)) sin (qt)

z(t) = −R sin (pt)

where r0 is distance from the centre of the torus to the centre of the tube forming the torus
while R is the radius of the tube itself.

If p/q ∈ Z then these equations describe an unknotted curve lying on the surface of the torus
whereas if p and q are prime they describe a knotted curve. To see this consider a “topological”
representation of the torus: this can be drawn as a flat square or rectangle, where the sides
are identified with one another as in fig. 1.9. This figure indicates that one can join the green
sides to form a cylinder and then the red sides to make a torus. Viceversa, one can image to
cut the torus along the red and green lines to obtain a flattened out representation. Curves
that lie on the torus can also be drawn in this flat representation. In particular, p and q can
now be easily visualised as the number of times these curves span the rectangle along the two
directions. The identification of the sides also imply that curves that exit the rectangle at a
certain point re-enter from the same point on the other side.

In Fig. 1.9 I show an example of a torus knot (the trefoil) explicitly drawn on the surface
of a torus. This is the simplest torus knot and corresponds to the case with p = 3 and q = 2
(The same knot also can be drawn as p = 2 and q = 3, but it would appear different to the
one in Fig. 1.9). In the figure I also show the flattened-out representation of this curve along
the torus (with same colour scheme): this starts from the bottom-left corner, exits the top side
at 2/3 of its length, re-enters from the bottom at the same position, exits the right side at 1/2
of its length, re-enters from the left, exits from the top at 1/3, re-enters from the bottom and
finally ends up at the top-right corner, which is identified with the left-bottom one thus closing
the curve.

An interesting properties of torus knots is that their unknotting number can be computed
knowing the values of p and q defined above as ((p− 1)(q − 1))/2. is there a simple proof?

Exercise 3

(*) Use the following code in Mathematica to visualise the trefoil drawn on the surface of a
torus:

filledtorus[u_, t_] :=
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Figure 1.9: Torus knots can be drawn on the surface of a torus (T 2). If you imagine to cut a
torus along the green and red circles, you will obtain a rectangle as in the figure. The green
and red sides are identified with one another, as they are really the same line on the torus.
Curves that go through one of the sides reappear on the other, because of the torus periodicity.
Accordingly, a (p, q) torus knot can be thought as a line traversing the rectangle p times in one
direction and q times in the other, and ending up at the starting point. Here I show a trefoil
(3, 2)−torus knot drawn on the surface of a solid torus and on the flattened-out representation
using the same colour scheme to aid its visualisation.

{Cos[t] (1.5 + 0.95*Cos[u]), Sin[t] (1.5 + 0.95*Cos[u]), Sin[u]}

pqtorusknot[t_] :=

{(1.5 + Cos[p t]) Cos[q t], (1.5 + Cos[p t]) Sin[q t], -Sin[p t]}

Show[ParametricPlot3D[filledtorus[u, t], {t, 0, 2 Pi}, {u, 0, 2 Pi},

PlotStyle -> Directive[LightGray, Opacity[1]], Mesh -> None,

Boxed -> False, Axes -> False],

ParametricPlot3D[pqtorusknot[t] /. {p -> 3, q -> 2}, {t, 0, 2 Pi},

ColorFunction -> Function[{x, y, z, t}, Hue[t]],

PlotStyle -> Directive[Black, Thickness[0.02]]]]

(*) Modify the parameters p and q to draw other (torus) knots.

(*) Try the formula to find the unknotting number of few torus knots: 31 = (3, 2), 51 = (5, 2),
71 = (7, 2).

1.3.2 Twist Knots

Another important family of knots is that of “twist” knots. The simplest way to define these
is by describing how to tie them:

• Take a rope and hold it fixed at its two extremities while shaping a long “U”;
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• Take the middle of the rope and twist the whole loop, an integer number of times;

• Finally, take one of the ends and pass it through the top hoop of the rope, and link the
ends so that the rope is now closed.

Increasing the number of twists you can create increasingly complex knots: trefoil (which,
notably, is not only a torus, but a twist knot too), figure-of-eight (41), 52, 61, 72, 81 (in the
figure above), etc.. One interesting property of these knots is that they all have unknotting
number one: reverting one of the two crossings at the top loop is enough to undo the knot.
Another interesting fact is that the only amphichiral twist knots are the unknot and the 41.

Although these knots have a straightforward way to be tied, they do not have equally
simple analytical parametrisation. Indeed, only the figure-of-eight can be described through
parametric equations, thanks to the fact that can be drawn on the surface of a punctured torus
(or a torus with 2 holes). The knots that share this feature are called double torus knots.

One possible parametrisation of the 41 knot is

x(t) = (2 + cos (2t)) cos (3t)

y(t) = (2 + cos (2t)) sin (3t)

z(t) = sin (4t)

1.3.3 Lissajous Knots

Lissajous curves in 2D have been studied in the past for their use in electronics. Their extension
in 3D can describe some knotted curves. This family of knots is described by the simple
equations

x(t) = cos (nxt+ δx)

y(t) = cos (nyt+ δy)

z(t) = cos (nzt+ δz)

where nx, ny and nz are integers and the phase shifts δx, δy and δz may be reals. As knotted
curves can never self-intersect there are constraints on the values of these 6 parameters. An
important one is that the 3 integers nx, ny and nz must be pairwise relatively prime.

Examples of Lissajous knots are:

• 52 = {(nx, ny, nz), (δx, δy, δz)} = {(3, 2, 7), (0.7, 0.2, 0)}

• Stevedore’s knot: 61 = {(3, 2, 5), (1.5, 0.2, 0)}

• Square knot: 31#31 = {(3, 5, 7), (0.7, 1.0, 0)}

• 821 = {(3, 4, 7), (0.1, 0.7, 0)}
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1.4 Simple Classification of Links

Although the theory of links considers generic multi-component links, we will primarily focus
here on two-components links which are made by a pair of chains. Consider two simple closed
curves, C1 and C2 that are disjoint, i.e. with no points in common, and embedded in three-
dimensional space. The curves are said to be topologically linked or, more simply, linked if no
smooth deformation exists by which they can be pulled apart so that they lie in two different
half-spaces separated by a plane.

As mentioned before, the Alexander-Briggs notation for links is made by using the minimal
crossing number with a superscript denoting the number of components and subscript indexing
the member of the family. A pair of unlinked rings is denoted as 02

1 while the simplest link, i.e.
the Hopf link, as 22

1.

1.4.1 Linking Number

One important number that can be used to classify knots has first been proposed by Gauss and
it is the “linking number” (it is actually a “topological invariant”, see next chapter). Loosely
speaking it corresponds to the effective algebraic number of times the one curve winds around
the other, and viceversa. If the link can be approximated by a series of points in 3D r1 and r2
for the two components C1 and C2 then their linking number can be computed as

Lk(C1, C2) =
1

4π

∫
C1

∫
C2

(r1 − r2) · (dr1 × dr2)

|r1 − r2|3
= (1.1)

=
1

4π

∫
S1×S1

ds dt
(γ1(s)− γ2(t)) · (γ̇1(s)× γ̇2(t))

|γ1(s)− γ2(t)|3
(1.2)

where the latter equation holds if the curves C1 and C2 can be analytically described by para-
metric curves γ1(s) and γ2(t) with s, t ∈ [0, 2π) and tangents γ̇. [Notice that this integral
formulation has strong connections to the Biot-Savart law of electromagnetism. xxx]

Alternatively, if the curves cannot be simply described analytically or approximated nu-
merically (for instance when you draw them on a piece of paper) their linking number can be
conveniently evaluated as follows:

• Choose an orientation for each curve;

• To each crossing assign +1 (right-hand) or -1 (left-hand) value according to its handed-
ness;

• The linking number Lk(C1, C2) is the sum of all these values divided by 2.

It is important to notice that the value of Lk does depend on how the two curves are oriented.
In the case that the curves possess an intrinsic orientation based on their chemical or physical
properties then it is meaningful to consider the signed value of Lk. Otherwise in abstract or
general contexts, where the choice of orientation is subjective, it is more appropriate to consider
only the absolute value |Lk| which is independent of the curves orientation.

The linking number is a useful descriptor but suffers of serious limitations. Consider for
instance Fig. 1.10. The 52

1 link is called the “Whitehead link” and has |Lk| = 0. Nonetheless,
this link cannot be taken apart, i.e. it is a non-trivial link. [This link also appears in Thor’s
hammer]. This ambiguity has made necessary the introduction of the concept of homologi-
cally linked curves which is used to denote two curves C1 and C2 having |Lk(C1, C2)| = 0.
Homologically-linked curves are also referred to as being algebraically linked, in contrast to
topological or geometrically linked ones. Indeed, pairs of curves that are homologically linked
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are guaranteed to be topologically linked but, as shown by the previous example, the converse
is not true. Another example of the same type is the case of “Borromean rings”, depicted as
the 63

2 link in Fig. 1.10. This link is made of three rings, none of which is topologically linked to
any other and yet, the components cannot be taken apart. On the other hand, by cutting any
one of the rings one can release the other two. [This link was used as a symbol of strength and
unity in the coat of arms of the noble family of Borromeo in Milan around ’300, from where it
takes the name.]

Figure 1.10: Some 2-component links and one interesting 3-component link.

1.5 Linking, Twisting and Writhing

The substance that carries our genes, i.e. the DNA, is a long double-stranded helix that can
be knotted and linked [2, 1]. DNA is far from being a 1-dimensional curve. Indeed, it is
more similar to a twisted ribbon. For this reason, the simple theory of knotting and linking
cannot capture the full complexity of DNA topology. To this end, we need to develop a more
sophisticated theory for the possible topological states of a ribbon.

The two edges of a ribbon can be thought of as two curves. When we close the ribbon to
make a strip, it makes sense to ask whether these two curves are linked or not.

Strictly speaking, when we close the ribbon we need to make sure that the top edge on one
end matches the top edge on the other: therefore, while the ribbon may be twisted prior to
closure, it has to be twisted by an angle which is a multiple of 2π. If we were to twist the ribbon
by π or an odd multiple of π before joining the ends, we would generate a non-orientable surface
(so-called Möbius strip for π rotation). A non-orientable surface is a surface which cannot be
unambiguously oriented. For instance, imagine to be a small ant living on the middle strip
drawn in Fig. 1.11. Start walking from the red dot and circle the strip once. When you get
back to the red spot you will realise that your journey has led you on the wrong side of the strip.
You soon realise that the strip needs to be traversed twice in order to get back to the original
tarting point. [There are famous paintings by M. C. Escher which artistically represent these
types of surfaces. ] You can also realise that the Möbius strip does not have to independent
edges, but one edge connects into the other forming a unique contour.

Given a closed ribbon where the edges define two distinct curves, it then makes sense to
introduce the concept of linking number of the curves corresponding to the two edges, say C1

and C2, Lk(C1, C2). In practice, the linking number measures the number of turns n introduced
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Figure 1.11: A non-twisted ribbon, a Möbius (half-twisted) strip and a once-twisted ribbon.
The paths drawn on the ribbons should be understood as being red when lying on the side
facing the reader while green when lying on the side hidden from the reader. This eases the
visualisation of the transition between sides.

in the ribbon before the two ends are joined. In this case, the convention is to give the two
edges of the ribbon the same orientation, so that it now makes sense to consider the linking
number as a signed quantity, with positive linking number corresponding to a right-handed
ribbon.

In the context of DNA, the linking number measures the number of double helical turns. For
a DNA molecule in equilibrium, i.e. on which no stress or torque is applied, this number equals
its contour length, L, divided by the double helical pitch, p = 3.5 nm or 10.5 base-pairs [2].

It is intuitively clear that, once the ribbon is closed, the linking number Lk(C1, C2) is a
globally conserved quantity, i.e., whatever the dynamics of the ribbon, it cannot change provided
the ribbon is not cut. However, there are many possible conformations compatible with the
constraint of having a fixed linking number. It is useful to characterise these conformations via
two geometric quantities: the twist, Tw, and the writhe, Wr, exemplified in Fig. 1.12.

Figure 1.12: Examples of twist (local crossing of ribbon’s edges) and writhe (non-local crossing
of ribbon centreline). A ribbon displaying on unit of writhe (self-intersection of ribbon centre-
line) is topologically equivalent to a ribbon displaying one unit of twist (2π rotation or 2
half-twists). The linking number Lk = Tw +Wr is conserved.

The “twist” of the ribbon tells how many full turns should be removed in order to have it
flat on a plane. Whereas the “writhe” tells how many times the ribbon crosses over itself. Both
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these quantities have a sign: the convention is that a right-handed twist is positive, while the
sign convention for the writhe is the same as for the crossings (see Fig. 1.7).

Empirically, we can convince ourselves that if we increase the linking number by twisting up
the ribbon many times before closure, then a simple circular structure may not be stable and
the ribbon may coil onto itself and display writhe. This coiling exchanges the local torsional
stress with configurational one. In other words, the ribbon sacrifices entropy to reduce the
energy stored under the form of local twist. This interplay between local stress and non-local
response is peculiar of elastic curves and can be observed in DNA [2].

The observation that twist and writhe are geometrically linked leads to a very important
result, known as White-Fuller-Călugăreanu’s theorem [5, 3]:

Lk = Tw +Wr . (1.3)

Therefore, as the linking number is conserved, in possible physical conformations one can
convert twist into writhe, provided that their sum is constant. This result is central for the
physics of DNA, and DNA supercoiling.

Exercise 4

(*) Prove the White-Fuller-Călugăreanu’s theorem using the definition of linking number
Lk between two curves.

Hint: calculate the linking number of these two configurations:
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Chapter 2

Topological Invariants

2.1 The Need of Invariants

How can you decide if two knots are equivalent? This is a question that has been around for
a long time and no one has found a formal answer yet. The most useful resource we have to
classify knots is based on “topological invariants”. These are objects (in general numbers) that
do not change when the contour of the knots is continuously deformed, i.e. up to isotopy.

There are several choices for topological invariants, but some are better than others. Here’s
a list of some commonly used ones:

- Linking number: it is the number of times one of the link components winds around the
other;

- Minimal crossing number: it is the minimum number of self-intersections that can be
seen in a regular knot diagram;

- Minmax number: it is the minimum number of local minima (or maxima) that can be
found in a knot embedding in a fixed Cartesian direction;

- Genus: it is the number of “handles” of the minimal surface spanning a link or a knot;

- Conway Polynomial: it is constructed as a recursive algorithm on a knot diagram (see
below);

- Alexander Polynomial: it is generated by constructing the associated matrix from a knot
diagram (see below);

- Knot Group: it is the fundamental group of the knot complement (see next chapter);

- Braid Group: it is the group of the braid associated with a given knot (see next chapter).

In this Chapter we will see how to construct more sophisticated invariants with respect to
the ones used in the previous chapter. One key point will remain valid though, that two knots
can be classified as equivalent if they can continuously deformed into one another. So, let’s
first define some more precise ways to continuously deform knot diagrams.

2.2 Reidemeister Moves

In the previous Chapter we have seen some cases in which it was required to deform knotted
curves, for instance to see whether they looked like their mirror image. In those cases we did

21
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not follow precise indications on how to deform them and this may have led to some confusion!
We now introduce some prescriptions on how to formally deform knotted diagrams so that
we can find out whether two knots are equivalent by checking that they look the same after
having performed a well-defined series of moves, called “Reidemeister moves”. These moves
are the essential ones to produce all kinds of ambient isotopies between knot diagrams. [An
“ambient isotopy” is a continuous deformation of the knot contour within the embedding space,
i.e. “ambient”.] Hence, two knot diagrams that differ by a number of Reidemeister moves are
equivalent, or “ambient isotopic”.

The Reidemeister moves are three:

Figure 2.1: Reidemeister moves.

Exercise 5

(*) Simplify the following diagram using Reidemeister moves.

(**) Simplify the following diagram using Reidemeister moves.

(*) Prove that the following process will always lead to unknots: start drawing; every time
you cross a previously drawn segment, underpass it; repeat until you return to the start.

(**) Two equivalent links have same linking number Lk. This means that Lk is invariant
under ambient isotopy. Show it using Reidemeister moves.
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2.3 Conway Polynomial

In order to introduce the concept of polynomial invariant we need to start from some axioms.
The first two are general to all polynomial invariants, i.e. equivalent knots give identical poly-
nomials and that there is an “identity” element (the unknot). The third axiom is more specific
to the polynomial under consideration.

Axiom 1: For each knot and link K there exist a corresponding polynomial C(K). Equiv-
alent knots (or links) are given identical polynomials, i.e. K ∼ K ′ ⇒ C(K) = C(K ′).

Axiom 2: The trivial knot is associated with the “identity” CK = 1.

Axiom 3: Suppose that 3 knots or links differ at the site of one crossing as:

then

C(K)− C(K ′) = zC(L) . (2.1)

The last axiom defines a relationship between knot diagrams in which one of the crossings
is changed and the associated polynomials. By iterating this last relationships we end up either
to the trivial knot or to cases for which we know the associated polynomial (see exercise below).
At the end of this procedure we obtain a polynomial of the form CK = a0 + a1z + a2z

2 + . . . .
The coefficients an ∈ Z have well-defined physical meaning that we will discover later.

Exercise 6

(*)Show that any split link (i.e. a link that can be drawn as disjoint components) has zero
Conway polynomial.
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(*)Find the Conway polynomial of the trefoil.

(*)Find the Conway polynomial of the figure-of-eight.

2.3.1 Why Polynomials Are Better

Up to here we had looked at examples which do not reflect the true power of polynomial
invariants. For instance, the minimal crossing number can already capture the knottedness of
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the trefoil. Now, we will have a look at two cases in which the Conway polynomial outperforms
other invariants.

Exercise 7

(*) Find the Conway polynomial for the positive and negative Hopf link.

(*) Find the Conway polynomial for the Whitehead link.

(*) Find the Conway polynomial for the the family of 2n-crossings link:
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So, we have seen that the Conway polynomial can detect handedness of the Hopf link (but
not of the trefoil, try it!) and can even detect the linkedness of the Whitehead link.

2.3.2 Meaning of the Polynomial Coefficients

With the examples we have examined we can then see that a0 is 0 if the link has more than
one component and 1 if it is a knot (1 component). At the same time a1 is the linking number
between the components (if there are 2) and it is 0 otherwise (see exercise in the previous
section). By computing the Conway polynomial for the trefoil one can see that a2 is a sort of
self-linking from splicing crossings on K. One can iterate this reasoning:

a0(K)− a0(K̄) = 0 (2.2)

a1(K)− a1(K̄) = a0(L) (2.3)

a2(K)− a2(K̄) = a1(L) (2.4)

. . . (2.5)

In general:

an+1(K)− an+1(SiK) = εi(K)an(EiK) (2.6)

where an is the coefficient of the term zn in the polynomial, εi is the sign of i−th crossing, Si

denotes switching crossing i and Ei denotes eliminating crossing i.

As last exercise, calculate the a2 of the following knot K:
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2.4 Alexander Polynomial

One of the best known knot polynomial invariant is the Alexander polynomial. The latter is
defined in terms of a single variable, t and is computed, starting from a given diagram according
to the following general prescriptions:
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1. attach an orientation to the diagram and establish the sign of each crossing using the
right-hand rule, as in Fig. ??

2. assign a progressive numbering index to the n arcs of the diagrams and (separately) to
the n crossings.

3. define an (n × n) matrix M . The elements of the x-th row of M are calculated by con-
sidering the x-th crossing in the diagram and the three arcs, i, j and k taking part to the
crossing. For definiteness we shall assume that the i-th arc passes over arcs j and k. All
elements of the x-th row of M are set to zero except for M(x, i), M(x, j), M(x, k). These
three entries are calculated as follows:

(a) if the crossing x is positive then M(x, i) = 1− t, M(x, j) = −1 and M(x, k) = t,

(b) if the crossing x is negative then set M(x, i) = 1− t, M(x, j) = t and M(x, k) = −1.

Iterating the procedure for all crossings the matrix is completely defined.
Deleting any one of these columns and any one row yields a (n−1)× (n−1) matrix. This is

the Alexander matrix associated to a given diagram. The determinant of the Alexander matrix
(which is therefore a minor of M) is the desired Alexander polynomial, ∆(t). Strictly speaking,
the Alexander polynomial is not uniquely defined for a given knot type. This is evident because
the size of the matrix, M , and hence the determinant, depend of the number of crossings and
hence on the details of a given diagrammatic representation. It turns out that the Alexander
polynomials of two different diagrammatic representations of the same knot type can differ only
by a multiple of ±tm, with m ∈ Z. This ambiguity is immaterial if one computes |∆(−1)|,
which is indeed a topological invariant, and is normally computed in applications.

Figure 2.2: A possible labelling of crossings (c1, c2, c3), and arcs (a1, a2, a3) for the knot
diagram of the trefoil to compute its Alexander polynomial.

As an exercise, we can compute the Alexander polynomial of a trefoil (see Fig. 2.2 for a
possible labelling of crossings and arcs). The Alexander matrix is1− t t −1

−1 1− t t
t −1 1− t

 (2.7)

and the corresponding Alexander polynomial is ∆(t) = t2− t+1, so that the invariant quantity
|∆(−1)| = 3 for the trefoil knot.



Chapter 3

Knot Groups

In this chapter we will introduce the concept of group and see how it applies to knot theory.

3.1 A brief recap of groups

In mathematics, a group is an algebraic structure equipped with an operation that can associate
any two elements to form a third, together with identity, inversion, closure and associativity.
Well known examples of groups are the integers with the addition operation and symmetry or
rotations in d-dimensions.

More specifically a set G, together with an operation · that combines two elements of G, is
a group, denoted by (G, ·) if

(closure) if a, b ∈ G then a · b ∈ G;

(associativity) a · (b · c) = (a · b) · c;

(identity) a · id = a;

(inversion) a · a−1 = id.

Groups in which the operation is commutative are called Abelian and Non-Abelian otherwise.

Exercise 8

(*) Show that Z with addition is a group.

3.1.1 Dihedral groups

A useful example of groups are the symmetry groups. A specific example of these are the finite,
dihedral groups. These are composed by polygonal shapes, together with symmetry operations.
The notation is that for a n-sided polygon, the associated group with 2n operations is denoted
Dn.

Dihedral group D2 It is the dihedral group of an planar object that has 2 sides. It is also
called the Klein 4-group and it is associated to liquid crystals and biaxial nematics. D2 is
Abelian.

29
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Dihedral group D4 This group is that of an object with 4 sides (a square). For a square
there are 8 possible operations that leave the square unchanged, 4 rotations (0,π/2, π, 3π/4)
and 4 reflections (up-down, left-right and 2 diagonals). Compositions of these operations give
a new element which is identical to the original square, i.e. satisfying closure. The group is not
Abelian (as one can notice by depicting a non-symmetrical face within the square) draw pic.

3.2 The representation of groups

A group can be represented by the set S of generators of the group and the relations (if any)
between them. The generators are “minimal words” that can be used to compose all the
elements of a group. For instance, the group of discrete rotations can be composed by powers
of one element, ρ being the smallest rotation. Finite dihedral groups are composed by the
generators of rotations ρ and reflections σ. In these cases, a certain number of rotations are
equivalent to no rotation at all, hence there exists a relation ρn = 1, that defines the limits
of the group actions. Take D4 as an example, the element ρ describing a π/2 rotation can be
iterated to form the others ρ2, ρ3 but ρ4 = 1, no rotation at all. The same holds for reflections,
σ for which σ2 = 1. Hence its representation is

D4 = 〈σ, ρ|ρ4 = σ2 = 1, (σρ)2 = 1〉 , (3.1)

the last relation is a combination of generators which independently lead to the identity.

Exercise 9

(*) Try it to see if the relations of D4 work

3.3 The fundamental group

Given a topological space X, its fundamental group (π1(X, x)) is generated by all classes of
loops based at x.

To visualise this group, imagine to be embedded in a space, say R3 to start with, and image
to draw a point x somewhere. Now image to draw many loops that start from x and come
back to x after meandering in R3. Now ask yourself the following question: are all these loops
equivalent or can they be divided into distinct classes? It turns out that for R3, all loops you
can draw are equivalent and are null-homotopic. Hence, the fundamental group of R3 is trivial,
i.e. the identity.

Imagine now to sit on S1 (a circle), decide a point x and draw all loops you can draw.
The simplest one is the loop that circles the circle once. The second simplest is the one that
circles it twice. The third . . . . Then, can all these loops be deformed one into the other? The
answer is no! Because the circle is a 1D line in a 2D space, there is no room for deforming the
loops one into the other. Hence, these loops you have drawn all belong to distinct classes. The
fundamental group of the topological space S1 is homeomorphic to a group that we know very
well (see Section 3.1)! Imagine to draw a loop that winds n times the origin (call it a), and
then one that winds it m times (call it b) the composition of a · b = c is a loop that winds n+m
times, i.e. π1(S

1, x) = (Z,+).

Theorem 1 If the topological space is path-connected, then π1(X, x) ≡ π1(X).
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Theorem 2 If the topological space is simply connected, then π1(X, x) ≡ Id.

Exercise 10

(**) Explain why the above statements are true

The distinct classes of loops form the elements of the group. The elements can be represented
by the generators. For instance, R3 has trivial generators, S1 has one generator that produces
all possible loops.

3.4 The fundamental group of the knot complement

First, we introduce the concept of the complement of a knot. Consider a curve K embedded in
D = R3 or D = S3 = R3 +∞, its complement is defined as D−K (the embedding space minus
the knotted curve). Then, we define the group of a knot as the fundamental group of the knot
complement. Then we can state that

Theorem 3 The groups of equivalent knots are equal.

One can use the complement of a knot to determine whether two knots are the same knot.
In other words, the knot complement is, up to homeomorhpisms, a topological invariant.

Exercise 11

(***) Show that link complement is not a topological invariant

3.4.1 The Wirtinger Representation

In order to compute the group of knotted curves it is often useful (bur not necessary) to start
from the Writinger representation. This can be constructed in the following way:

1. Draw a regular knot diagram and orient the curve;

2. Label the arcs with αi, i = 1, ...;

3. Draw an arrow passing under each arc in a right-handed fashion. This indicates a section
of the loop starting from the eye of a distant observer (you) and passing under the arc
according to the arrow direction and coming back to the eye.

4. Label the arrows xi, i = 1, ...;

5. At each crossing of the knot diagram, there are two intersecting arcs and three labels: αi,
αi+1 (for the arc passing under) and αk for the arc passing over. Thus, there are three
arrows, xi, xi+1 and xk. Depending on the sign of the crossing there must be one of the
two relations:

• xkxi = xi+1xk if positive

• xixk = xkxi+1 if negative
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6. For a diagram with n crossings there are n relations with n unknowns, hence the system
is fully determined. Because we only need relations, it is enough to analyse n−1 crossings
and then obtain the minimal generators and relations to represent the group.

Example: Unknot

Draw an uknot and all loops with base point in R3. It is clear that it is equivalent to S1.

Example: trefoil

[draw] Relations:

• x1x2 = x2x3

• x1x2 = x3x1

• x3x1 = x2x3

Use two of these relations to get

π1(31) = 〈x1, x2|x1x2x1 = x2x1x2〉 (3.2)

Exercise 12

(*) Show that this is equivalent to

π1(31) = 〈a, b|a2 = b3〉 (3.3)

Exercise 13

(***) Show this group

π1(31) = 〈a, b|a2 = b3〉 (3.4)

is the one for the trefoil by using the fact that it is a torus knot. In other words, draw it on
the surface of a torus and then study the topological space T 2 − 31, how can you describe it
via generators?

Exercise 14

(**) Generalise the finding of the previous exercise to Tp.q torus knots.

Example: figure-of-eight

[draw] Relations:

• x1x4 = x3x1

• x3x2 = x1x3

• x1x2 = x2x4

• x3x4 = x4x2
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Use three of these relations to get

π1(41) = 〈x1, x3|x−11 x3x1x
−1
3 x1x3 = x3x

−1
1 x3x1〉 (3.5)

Exercise 15

(**) [draw] The square knot and the granny knot are not equivalent. Show that the fun-
damental group the granny and the square knot are the same.

Easy way:
The knot complement does not capture handedness. Hence, because
square=3r

1#3l
1

granny=3r
1#3r

1

the two fundamental groups must be the same.
Difficult way:

Compute and compare the knot groups.

π1(square) = 〈x, y, z, w|xyx = yxy, wzw = zwz, x = w〉 (3.6)

π1(granny) = 〈x, y, z, t|xyx = yxy, tzt = ztz, t = x〉 (3.7)

Theorem 4 The fundamental group of the knot complement is not a complete topological in-
variant.

Exercise 16

(**) [draw]
Compute the knot group of twist knots with n crossings.
[xx todo xx]
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Chapter 4

Seifert Surfaces

Definition: A Seifert surface of a knot or link K is a connected, orientable, compact 2-
manifold M with ∂M = K, i.e. its boundary is the knot or link K.

Theorem 5 Every closed orientable connected 2-manifold is homeomorphic to one of the ones
in this table and it is classified by its genus g ≥ 0 (or Euler characteristic χ).

Manifold S2 T 2 T 2 # T 2 ... T 2 # ... # T 2

genus 0 1 2 ... g
χ -2 0 2 ... 2-2g

The Euler characteristic can be computed from the simplicial representation of the mani-
fold. The genus is effectively the number of “holes” in the manifold.

Definition: The genus of a knot or link is the least genus of all possible Seifert surfaces.

Theorem 6 Every knot or link is the boundary of a Seifert surface.

The proof of the theorem is the actual construction of such a surface for a generic knot or link.
In order to construct it, one follows these steps:

• Draw a regular knot (or link) diagram

• “reconnect” all crossings according to the orientation of the crossing arcs. The resulting
curves form disjoint discs.
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• Push the nested discs upward to make them stack like a wedding cake

• Orient the discs according to the direction of the boundary curve

• Replace the crossings with half-twists joining the discs

At the end of this procedure, you have created an oriented surface whose boundary is the knot
or link.

The disjoint discs created in this procedure are called Seifert circles. One useful way to
compute the genus of a surface is by first computing the Euler characteristic of the correspond-
ing simplicial complex. This is done by noticing that, topologically, the Seifert construction
generates discs connected by strips, which can shrunk to points connected by edges.

Then the Euler characterstic χ can be simply found as χ = #(points) − #(edges) and the
genus can then be calculated reminding that χ = 2− 2g − k (g = 1− (χ + k)/2) and k is the
number of components of the knot or link), hence

g = 1− χ+ b

2
= 1− s− c+ b

2
(4.1)

where s is the number of Seifert circles (points), c the number of crossings (edges) and b the
number of boundary components.

Exercise 17

(*)Calculate the genus of the Hopf Link.

(*) Calculate the genus of the following link.

(**) Show that the genus of a torus knot is geq(p− 1)(q − 1)/2.
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Minimal Surfaces

What is a minimal surface

Surface bounded by a boundary whose mean curvature is zero.

Surface Tension

At a liquid-air interface, the liquid molecules experience a larger attraction to other liquid
molecules, due to cohesion, than air molecules. This means that the net force on a molecule at
the boundary of a film is inward, towards the bulk. While a molecule in the bulk does not feel
a net force (see Fig. 5.1). Thus the surface of a liquid can be seen as an elastic layer, which
is under tension due to imbalanced forces. Chemical details are important to determine the
surface tension of liquids. For instance water has a high surface tension due to hydrogen bonds,
whereas soapy liquids display a much lower surface tension. For this reason, any given body of
liquid tries to minimises its surface, and hence form droplets rather than streams of fluids.

The Young-Laplace equation describes the difference in pressure between two fluids when
there is a thin wall with surface tension γ and mean curvature H in the middle:

∆p = −γ∇ · n̂ = 2γH = γ

(
1

R1

+
1

R2

)
(5.1)

A minimal surface can be defined through the Young-Laplace equation by saying that it is
a surface whose pressure difference is zero.

The Plateau–Rayleigh instability (that for which any stream of liquid is destined to break
up into droplets, or beads of liquid) is driven by surface tension.

Why is a soap film a minimal surface?

Soap films are fluids suspended from a solid frame. They are thin, typically a few hundred
nanometres thick whilst spanning a frame with lateral dimensions of several centimetres, so that
surface effects dominate many of their properties, both static and dynamic. Surface tension
causes soap films to minimise their surface area, leading to the well-known characterisation of
their shapes as minimal surfaces. This also accounts for a striking feature of soap film dynamics,
namely that they exhibit topology changing transitions, triggered by a fundamental instability
of the area functional. The canonical example of this is the collapse of the catenoid minimal
surface, spanning a frame of two round circles, to a pair of disconnected discs.

Two of the most striking features of soap films are their beautiful morphology, and the fact
that they are inherently unstable. Both of these may be understood on the basis that their
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Figure 5.1: surface tension

energetics are dominated by interfacial tension so that an appropriate free energy is simply the
total surface area of the soap film (or of the surface approximating it). The shape of the film
is then given by the condition that it be a critical point of the area functional, while the issue
of (in)stability comes from the Hessian at those critical points

By the Young-Laplace eq. the difference in pressure between the two sides of a soap film
has to be zero. This turns out to be eual to the mean curvature H = (k1 +k2)/2. So soap films
and minimal surfaces have zero mean curvature. This means that they locally look like saddles
everywhere.

Minimal Surfaces in Linked Rings

Perhaps the simplest example of two surfaces that are homeomorphic but not isotopic are the
two distinct soap films spanning the Hopf link (n = 2) frame, which differ in the relative linking
number that they induce between the two boundary circles

Instabilities and Topological Transitions

Such instabilities and topological transitions are generic; a well-known theorem in the mathe-
matics literature states that the only stable complete minimal surface embedded in R3 is the
plane.

The transition from a Moebius strip to a disc involves a singularity that occurs at the
boundary of the soap film [xx], whereas the singularity of the catenoid occurs in the bulk.



Chapter 6

Surface Evolver

6.1 What is Surface Evolver

Surface evolver is a software developed by K. Brakke (Susquehanna university) to study the
shape of surfaces driven by surface tension and other forces. The simplest algorithms imple-
mented in the software numerically minimise the free energy of the system by steep gradient
method. As seen in the previous chapter, any surface holds tension and hence energy. Minimis-
ing the free energy in the case that only surface tension is acting means minimising the area
of the surface, given its boundary. This is done by triangulating the surface and attempting
moves which reduce the number of triangles.

The software is highly flexible especially in terms of the surface boundaries. Any well-
defined boundary, even knotted or linked ones, are handled by the evolver (see examples
in following sections). In addition, volume, surface or boundary constraints can be added.

The Evolver can be used, and has been used, to obtain insights into a number of problems:
shape of cell membranes[xx], soap films[xx], instabilities of minimal surfaces[xx], threadings in
solutions of ring polymers [xx], etc.

Installation

Surface Evolver is available for Windows, Linux and MacOS. Detailed informations on how to in-
stall are given on Brakke’s web page: http://www.susqu.edu/brakke/evolver/evolver.html.
Make sure to acknowledge his effort by citing his work every time you will use surface evolver
in the future!

6.2 Basics

The basic elements used to define a surface are vertices, edges, facets and bodies. Vertices are
points in Euclidean space. Edges are straight lines joining points. Facets are flat triangles
bounded by three edges. A surface is a union of facets. A body is defined by its bounding
surface.

Importantly, there are no limitations on how many edges are originating from a vertex or
on how many facets are bound by one edge. This means that arbitrary topologies are possible,
including triple junctions in surfaces of soap films.

There is no restrictions on orientation of edges and facets, thus non-orientable surfaces are
possible (e.g. Moebius strip).

A surface that is constructed as the union of facets has an area and thus an energy arising
from the various contributions chosen by the user: surface tension, gravity, constraints, etc.
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In order to start the evolver, one needs an initial datafile data.fe which contain the list of
faces, edges and vertices (see below).

One an initial surface is defined, the key commands to obtain the final result are:

g n: performs n iterations to lower the free energy

r: refines triangulation

s: shows surface on screen

P: graphics output (print on file)

q: quit

Every time an iteration is performed, the new are is calculated as follows: first, the force
on each vertex is calculated from the gradient of the total energy as a function of the position
of that vertex. Second, the force gives the direction of motion unless constraints are applied,
in this case the force is made to conform to the constraint. Finally, the motion of the vertex is
found by multiplying the force by a global scale factor.

6.3 Working Examples

6.3.1 Soap Cube into a Soap Bubble

We are all familiar with soap bubbles. Because they are made of soap (as the name suggests)
they are shaped by surface tension. At this point the eagle-eyed diligent student should raise
his/her hand and ask whether there is some problem with the maths, as we showed in the
previous chapter that minimal surfaces have zero mean curvature everywhere, while a sphere
of radius R has principal curvatures equal to 1/R everywhere or mean curvature 2/R. The
problem is that for a freely floating soap bubble there is no boundary and hence the spherical
shape is the only one that minimises its finite area.

In this section we will make a soap bubble starting from a soap cube. Let’s start by defining
the cube using vertices, edges and faces. Start with the vertices. They do not necessarily have
to appear in any order. One can just list them as:

vertices

1 0.0 0.0 0.0

2 1.0 0.0 0.0

3 1.0 1.0 0.0

4 0.0 1.0 0.0

5 0.0 0.0 1.0

6 1.0 0.0 1.0

7 1.0 1.0 1.0

8 0.0 1.0 1.0

Now the edges are defined using the “id” of the vertices and one has to list the source and
target vertices for each new edge as:

edges

1 1 2

2 2 3

3 3 4

4 4 1



6.3. WORKING EXAMPLES 41

5 5 6

6 6 7

7 7 8

8 8 5

9 1 5

10 2 6

11 3 7

12 4 8

Finally, using the edges, one can define the faces, which are defined as the surface spanned by
a closed loop of edges. The orientation of the face is given by the orientation of the loop using
the usual right-hand rule

faces

1 1 10 -5 -9

2 2 11 -6 -10

3 3 12 -7 -11

4 4 9 -8 -12

5 5 6 7 8

6 -1 -4 -3 -2

Lastly, one can define the body as the volume contained by the faces as

bodies

1 1 2 3 4 5 6 volume 1

The first thing to do is to check out your cube. Start the evolver load the file with the instruc-
tions to make a cube and type ‘s’. If you then hit ‘h’ while focusing on the graphicss window
you will get all the possible graphics functions/options, like rotation, translation, spinning, etc.
Hit ‘q’ to go back to the command line for the evolver. To print your cube, hit ‘P’, choose
PostScript (option 3) and follow instructions.

To minimise the area of the cube, hit ‘g’, you will see that a line is printed with the iteration
number, area, energy, and current scale factor. Also, the vertices in the middle of the faces are
now popping-out. If you keep hitting ‘g’, not much happens after this step. This is because the
algorithm has minimised the area, given a certain triangulation. Of course, the triangulation
of the surface you see in Fig. 6.1 is very coarse. We can make a better triangulation by hitting
‘r’. The evolver will tell you how many vertices, edges and facets are now in the surface.
Evolve your surface hitting ‘g 10’, you will see that you have reached another minimum and
you are stuck! Again, refine and repeat the iteration until you find that further refining does
not decrease the area further.

Figure 6.1: A soap cube becoming a soap bubble.

As exercise, try to remove the volume constraint from the “bodies” section (this is done by
deleting “volume 1”) and see what happens to our soap cube. Can you explain why?
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6.4 Catenoid Collapse

In this section we will test the true power of surface evolver, i.e. performing changes of topology
of the surface. In this example we will start from a minimal surface that is formed between
two parallel rings that are close enough, i.e. a catenoid. “Catenoid” comes from “catena” or
“chain” because it is the surface obtained by spinning the shape of a chain hanging from two
poles under its own weight around a central axis. This surface is thus a surface of revolution
and has an analytical representation:

x =c cosh
v

c
cosu

y =c cosh
v

c
sinu

z =v (6.1)

where u = [−π, π) and v ∈ R. The catenoid exists as a minimal surface only when the two
parallel rings are placed near enough. When they are parted more than d∗ = 0.66R, then the
catenoid collapses into two disjoint disks (themselves minimal surfaces). See also a home-made
movie at https://www.youtube.com/watch?v=XqKDZB9nxDI. Let’s see if surface evolve can
capture this behaviour.

Let’s start by defining our frame. Here’s a problem! How can we define circles using
vertices and edges. We would need an infinite number of them. Luckily one can also give exact
parametric expressions for curves in 3D to surface evolver and select vertices on these curves.

We will start from a cylinder expressed as rectangles formed by edges belonging to the two
rings. The parameter we will need are (1) the separation between the rings d and (2) the radius
of the rings R. Unfortunately surface evolver does not like parameters in single letters so we
will use dz and Rc. We can thus specify parameters, curves, vertices, edges and faces as follows:

PARAMETER Rc = 1

PARAMETER dz = 0.5

boundary 1 parameters 1 // upper ring

x1: Rc * cos(p1)

x2: Rc * sin(p1)

x3: dz

boundary 2 parameters 1 // lower ring

x1: Rc * cos(p1)

x2: Rc * sin(p1)

x3: -dz

vertices

//they are fixed because otherwise will slide along boundary

1 0.0 boundary 1 fixed

2 pi/3 boundary 1 fixed

3 2*pi/3 boundary 1 fixed

4 pi boundary 1 fixed

5 4*pi/3 boundary 1 fixed

6 5*pi/3 boundary 1 fixed

7 0.0 boundary 2 fixed

8 pi/3 boundary 2 fixed
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9 2*pi/3 boundary 2 fixed

10 pi boundary 2 fixed

11 4*pi/3 boundary 2 fixed

12 5*pi/3 boundary 2 fixed

edges

//first the ones in each ring

//they are fixed because the new vertices cannot slide

1 1 2 boundary 1 fixed

2 2 3 boundary 1 fixed

3 3 4 boundary 1 fixed

4 4 5 boundary 1 fixed

5 5 6 boundary 1 fixed

6 6 1 boundary 1 fixed

7 7 8 boundary 2 fixed

8 8 9 boundary 2 fixed

9 9 10 boundary 2 fixed

10 10 11 boundary 2 fixed

11 11 12 boundary 2 fixed

12 12 7 boundary 2 fixed

//now the ones from ring 1 to ring 2

13 1 7

14 2 8

15 3 9

16 4 10

17 5 11

18 6 12

faces

1 1 14 -7 -13

2 2 15 -8 -14

3 3 16 -9 -15

4 4 17 -10 -16

5 5 18 -11 -17

6 6 13 -12 -18

Starting from this surface, which should mimic a discretised cylinder, refine the triangula-
tion once or twice and minimise the surface. Once you are happy with the result, hit ‘A’ and the
program will tell you which parameters you defined and which ones you want to change ‘on the
go’ by pressing the corresponding number and value. Press 2 and 0.6, this brings the distance of
the two boundary circles from 0.5 to 0.6. Now minimise again, you will notice that the catenoid
has a “slimmer waist”. Because this procedure accumulates “defects” in the triangulation, it is
often a good idea to equi-triangulate (redistribute the area among the triangles) by hitting ‘u’
and to remove the edges that have become shorter than a certain (small) value by hitting ‘t 0.05’.

For instance, follow this sequence from the start to get a nice catenoid: s, q, r, r, g 1000.
From here, separate the rings: A, 2 0.6, g 1000, u, g 1000, u, g 1000. And once more: A, 2 0.66,
g 1000, u, g 1000, u, g 1000. Now the catenoid is ready to undergo the collapse: A, 2 0.665, g
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1000, u, g 1000, u, t 0.05, g 1000, t 0.05, g 1000, t 0.05, g 1000.
As an exercise, from the start position yourself beyond the collapse point and observe the

neck shrinking from the top. Use a long iteration such as ‘g 10000’. You will see that the neck
stops, but after equitriangulation and removing short edges, it start collapsing again.

Another exercise is to remove the fixed condition from the boundaries and see what happens.
One more exercise, the catenoid instability can be induced when z < z∗. This can be done

by defining the catenoid to be the boundary of a body, and adjusting the body volume with
the b command to get zero pressure. This effectively generates a catenoid “implosion”. Try it.

Figure 6.2: A catenoid collapse.

6.5 Minimal Surfaces of Links and Knots

6.5.1 Hopf Link

Links and knots can be thought as boundaries of surfaces, for instance Seifert surfaces! On
the other hand, the Seifert surface is not necessarily minimal. As far as I know, there is no
general analytic description for minimal surfaces bound by knots and links. But, we have the
evolver. If you dip a Hopf link in a soap solution you do not immediately get a surface, but a
film with some triple junctions. [xx draw pic xx]. By popping the right part of the film one
gets a surface, with no triple junctions.

A ring in 3D space centred in zero and radius R can be parametrised as

x1(θ) = R cosα cos θ

y1(θ) = R sin θ

z1(θ) = R sinα cos θ

where the angle α represent a rotation around the y-axis. This can be see as the first boundary
of a film. Now we add a second, linked to the first,

x2(θ) = R cos θ

y2(θ) = R +R sin θ

z2(θ) = 0
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This ring lies flat in the x-y plane with normal directed as ẑ and is linked to the first, when
α 6= nπ and n ∈ Z. Both are parametrised by θ = [0 : 2π).

Let’s use these curves as boundaries for the input script of the evolver. Now we want to
draw a surface in between these boundaries. If you think about it, you will see that you can
do this in two ways. One, you can circle the vertices in one boundary in one direction, say
clockwise, while connecting the vertices on the other boundary with edges and circling them
either clockwise or counter-clockwise. By doing this you will obtain two different surfaces which
are mirror symmetric [xx to check xx].

Let’s try. We can write the following instructions for the first case, clockwise2

PARAMETER Rc = 10

PARAMETER atilt = pi/2

boundary 1 parameters 1 // first ring

x1: Rc * cos(atilt) * cos(p1)

x2: Rc * sin(p1)

x3: Rc * sin(atilt) * cos(p1)

boundary 2 parameters 1 // lower ring

x1: Rc * cos(p1)

x2: Rc + Rc * sin(p1)

x3: 0

vertices

//they are fixed because otherwise will slide along boundary

//use increments of pi/3 and start from pi/2

1 pi/2 boundary 1 fixed

2 5*pi/6 boundary 1 fixed

3 7*pi/6 boundary 1 fixed

4 3*pi/2 boundary 1 fixed

5 11*pi/6 boundary 1 fixed

6 13*pi/6 boundary 1 fixed

7 pi/2 boundary 2 fixed

8 5*pi/6 boundary 2 fixed

9 7*pi/6 boundary 2 fixed

10 3*pi/2 boundary 2 fixed

11 11*pi/6 boundary 2 fixed

12 13*pi/6 boundary 2 fixed

edges

//they are fixed because the new vertices cannot slide

1 1 2 boundary 1 fixed

2 2 3 boundary 1 fixed

3 3 4 boundary 1 fixed

4 4 5 boundary 1 fixed

5 5 6 boundary 1 fixed

6 6 1 boundary 1 fixed

7 7 8 boundary 2 fixed

8 8 9 boundary 2 fixed
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9 9 10 boundary 2 fixed

10 10 11 boundary 2 fixed

11 11 12 boundary 2 fixed

12 12 7 boundary 2 fixed

//join the two rings using shortest path

//start from vertices on the same side

13 1 7

14 2 8

15 3 9

16 4 10

17 5 11

18 6 12

faces

1 1 14 -7 -13

2 2 15 -8 -14

3 3 16 -9 -15

4 4 17 -10 -16

5 5 18 -11 -17

6 6 13 -12 -18

If you want the other case, clockwise in the first ring and counter-clockwise in the second,
one just has to change the vertices section into:

7 pi/2 boundary 2 fixed

8 pi/6 boundary 2 fixed

9 -pi/6 boundary 2 fixed

10 -pi/2 boundary 2 fixed

11 -5*pi/6 boundary 2 fixed

12 -7*pi/6 boundary 2 fixed

so that the second ring is circled in the opposite direction with respect to the first. At voila.
Two surfaces for the Hopf link, the first identifying a +1 link whereas the second identifying
the -1 link (fig. 6.3).

As exercise, check that if both rings are circled counter-clockwise, the obtained surface is
identical to the first clockwise2 case.

As exercise, modify the tilt angle alpha and examine how the minimal surface changes.
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Figure 6.3: Constructing the minimal surfaces of a Hopf Link
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6.5.2 Trefoil

One parametrisation of torus knots is

x1(t) = (r cos qt+R) cos pt

x2(t) = (r cos qt+R) sin pt

x3(t) = r sin qt

Where R is the radius of the torus centreline while r is the radius of the disk. The right-handed
trefoil is obtained by setting p = 2 and q = 3, the left-handed one by setting p = −2 and q = 3.
A good way to construct the surface in the trefoil is by setting a large R and a small r. In this
way it is easier to visualise the polygons making up the surface. Once it is made for the right
hand trefoil, the left-handed one follows easily just by changing the sign of p.

For a right-handed trefoil we can thus write the following instruction:

PARAMETER rmin = 0.5

PARAMETER rmax = 2

boundary 1 parameters 1

x1: (rmin * cos(3 * p1) + rmax) * cos(2 * p1)

x2: (rmin * cos(3 * p1) + rmax) * sin(2 * p1)

x3: rmin * sin(3 * p1)

vertices

1 0*pi boundary 1 fixed

2 0.2*pi boundary 1 fixed

3 0.4*pi boundary 1 fixed

4 0.6*pi boundary 1 fixed

5 0.8*pi boundary 1 fixed

6 1.0*pi boundary 1 fixed

7 1.2*pi boundary 1 fixed

8 1.4*pi boundary 1 fixed

9 1.6*pi boundary 1 fixed

10 1.8*pi boundary 1 fixed

edges

1 1 2 boundary 1 fixed

2 2 3 boundary 1 fixed

3 3 4 boundary 1 fixed

4 4 5 boundary 1 fixed

5 5 6 boundary 1 fixed

6 6 7 boundary 1 fixed

7 7 8 boundary 1 fixed

8 8 9 boundary 1 fixed

9 9 10 boundary 1 fixed

10 10 1 boundary 1 fixed

11 1 6

12 2 7
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13 3 8

14 4 9

15 5 10

faces

1 11 6 -12 -1 color 4 backcolor 15

2 12 7 -13 -2 color 4 backcolor 15

3 13 8 -14 -3 color 4 backcolor 15

4 14 9 -15 -4 color 4 backcolor 15

5 15 10 11 -5 color 4 backcolor 15

Try to evolve this surface and refine it. Can you tell the difference with previous surfaces?
What is happening to the colour of the surface? You can also try to deform the boundaries
by playing with the parameters rmin and rmax (remember that this can be done on the fly by
hitting ‘A’).

For the committed student, try different torus knots and check the orientability of the
resulting minimal surface.

Figure 6.4: Trefoils
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