Photomultipliers: Eyes for your Experiment

Edinburgh, 23.07.2003

University of Edinburgh

Basic Principle

Edinburgh, 23.07.2003

A Brief History

- □ 1887: photoelectric effect discovered by Hertz
- □ 1902: first report on a secondary emissive surface by Austin et al.
- 1905: Einstein: "Photoemission is a process in which photons are converted into free electrons."
- □ 1913: Elster and Geiter produced a photoelectric tube
- 1929: Koller and Campbell discovered compound photocathode (Ag-O-Cs; so-called S-1)
- 1935: lams et al. produced a triode photomultiplier tube (a photocathode combined with a single-stage dynode)
- 1936: Zworykin et al. developed a photomultiplier tube having multiple dynode stages using an electric and a magnetic field
- 1939: Zworykin and Rajchman developed an electrostatic-focusing type photomultiplier tube
- 1949 & 1956: Morton improved photomultiplier tube structure
- → commercial phase, but still many improvements to come

Edinburgh, 23.07.2003

Extension of Vision

Human eye:

Photomultiplier:

- Spectral sensitivity:
- Time resolution:

400<S(λ)<750nm ~50ms

110<S(λ)<1600nm 50ps...10ns

- Spatial resolution:
- Intensity range:

~100 lines/mm (2500dpi) $O(10^{16}\gamma/mm^2s)$ (daylight) $1\gamma ... \sim 10^8\gamma/mm^2s$ single photon sensitivity after adaptation

2mm...50cm

(~1mA anode current for 1" tube)

Life time:

 $O(10^5 \text{C/mm}^2 70 \text{yrs})$

O(10C) for semi-transparent cathode

Edinburgh, 23.07.2003

Photoemission

- □ 2-step process:
 - photo ionisation
 - escape of electron into vacuum
- □ Multi-reflection/interference due to high refractive index bialkali: $n(\lambda = 442 \text{ nm}) = 2.7$
- □ Q.E. difficult to measure
- often only an effective detection efficiency determined:
 - + internal reflection from a metallic surface
 - + collection of the photoelectrons
 - + electronic theshold...

Spectral Response

d_n(E)

2.15 eV

0.5

energy of ph

250 eV

1.5

E_c [eV]

hv [eV]

- $E_e = hv W dE/dx$
- Spectral response:
 - Quantum efficiency

$$QE(\lambda) = \frac{N_{p.e.}}{N_{\lambda}} = (1-R)\frac{P_{\nu}}{\alpha}P_{S}(\frac{1}{1+1/\alpha l})$$

- R = reflection coefficient
- $\alpha = \gamma$ absorption coefficient
- $l = e^{-}$ mean escape length
- P_{ν} = excitation probability
- $P_{\rm s}$ = surface transition probability
- Cathode sensitivity $S(\lambda) = \frac{I_c}{P(\lambda)} = \frac{\lambda \,[\text{nm}] \,\text{QE}(\lambda)}{1240} [\text{A/W}]$

Alkali Photocathodes

Photocathode Thickness

Blue light is stronger absorped than red light!

□ semi-transparent cathodes

best compromise for the thickness of the PC:

7 photon absorption length $\lambda_A(E_{ph})$

a electron escape length $\lambda_{E}(E_{e})$

Q.E. of thick cathode:

red response 🤊

blue response 🎽

Q.E. of thin cathode:
blue response
red response

Alkali Photocathode Production

- \square evaporation of metals in high vacuum \square Example: SbK₂Cs
 - < 10⁻⁷ mbar
 - < 10⁻⁹ mbar H₂O partial pressure
 - no other contaminants (CO, C_xH_y...)
 - bakeout of process chamber (>150°C) and substrate (>300°C)
- condensation of vapour and chemical reaction on entrance window

relatively simple technique

simplified sequential bialkali process

Phototube Fabrication

external:

internal:

Semiconductor Photocathodes

□ ☺ high Q.E. and spectral width

- © negative electron affinity
- \square \otimes complex production

(Hamamatsu)

λ **[nm]**

- a) grow PC on crystalline substrate
- b) create interface layer
- c) fuse to entrance window
- d) etch substrate away

Edinburgh, 23.07.2003

Secondary Emission

Classic Dynodes

- uniformity:
- photoelectron collection efficiency:

sensitive to Earth B-field (30-60µT)! no spatial resolution

Sensitivity to Magnetic Fields

Modern Dynodes

Multianode PMT

PMT Characteristics

Fluctuations

- number of secondary electrons
- Poisson distribution
- □ Saturation
 - space charge
 - large photon current
- Non-linearity
 - at high gains
- Stability
 - drift, temperature dependency
 - fatigue effects
 - Monitoring
- Sensitive to magnetic fields
 - Earth: 30-60 μT
 - \rightarrow requires μ -metal shielding

 \Box single photon events to oscilloscope (50 Ω)

charge integration \rightarrow pulse height spectrum

Pulse Height Spectrum

Edinburgh, 23.07.2003

Conclusion

- □ know your tools
- don't fool yourself with immature conclusions
- □ always cross-check as far as possible

- photomultipliers are a mature and versatile technology
- □ suitable for a vast range of applications in light detection:

 $110 < S(\lambda) < 1600$ nm down to 50ps 1γ ... anode current O(1mA) down to 2mm with low cross-talk up to 1.2T

flat panel PMT: next generation MaPMT

□ development goes on...

- SARA - GALLANS SARA State of the local division of the weeks of the South States of the STAT & 1 Lind and made to Line and the Line back the second - atin an an in the state LINE FEILER FLITTER FLITTER FLITTER FLITTER The set to be the back of the back in the back t HI HER HILLITICE CONTRACTOR 8 - the state which have the state of the stat addition to be a state of the s 10 Super-Kamiokande: 20" tubes