

Review of Readout for the MaPMTs

- Beetle chip (1.2 & 1.2MA0)
- results with Heidelberg board RICH meeting, CERN, 02.10.2003
- results with boardBeetle
 - summary on magnetic field Stephan Eisenhardt
 University of Edinburgh

Beetle 1.2 chip

- □ standard front-end
 - 128 channels
- used with 8-dynode stage MaPMT
 - ~55000 e⁻ / photon
- □ tested:
 - on Heidelberg setup
 - on boardBeetle
 - in testbeam
 (with boardBeetle)

RICH meeting, CERN, 02.10.2003

Beetle1.2MA0 chip

□ standard front-end

- 3 channels: input attenuator
- 3 channels: standard Beetle1.2
- 3 channels: charge divider
- 2 channels: modified FBR
- 53 channels: charge divider
- 64 channels: input attenuator
- used with 12-dynode stage MaPMT
 - ~300000 e⁻ / photon

□ tested:

- on Heidelberg setup
- on boardBeetle (briefly)
- in testbeam (only quick check with boardBeetle)

RICH meeting, CERN, 02.10.2003

Beetle1.2MA0 Attenuation Front-end

Red box means different to the standard Beetle1.2

Digital switching noise (80MHz)

- □ As discussed at VELO Beetle meeting 30.04.2003:
 - 80 MHz noise on analogue outputs and DataValid
 - Stems from digital circuit and multiplexer
 (tested by cut in power line internal to the Beetle)
- □ fix implemented for Beetle1.3
- □ Beetle1.3 returned to HD last week

Setup with Heidelberg board

Edinburgh setup

Beetle1.2 data frames: pedestal

MaPMT test pulses

RICH meeting, CERN, 02.10.2003

Heidelberg board: CM reduction

- **New Beetle chip** П
 - visible noise factor 2-3 lower compared to the old chip which had died
- Tuning of existing setup:
 - \rightarrow noise reduction of factor ~2
- Noise reduction session:

•	rerouting of power supplies	
٠	shielding of LED pulser	1
٠	new coax cables between MaPMT and HD board	1111

- new coax cables between MaPMT and HD board
- new GND routing layout for unused channels at PMT base 1111 1111
- new star point for GND at front-end
- massive (1/2 inch) AI GND plate below HD mother board
- \rightarrow all-in-all a noise reduction of factor ~ 5

Common mode reduction: П

- problem: 12 connected channels move more than the others
- solution: split into different groups and treat independently •
- noise reduction of factor ~3
 - problem: individual channels have ~10% weight
 - → artificial dip at cut position in corrected spectrum
 - solution: iterative CM reduction
 - \rightarrow dip reduced and moved to pedestal, CM reduction stays efficient
- Total noise/CM reduction wrt. last photodetector review: factor ~80

111

Signal with CM correction (HD board)

Uncorrected pedestal width: $\sigma \sim 4.5$ ADC

- Corrected pedestal width: $\sigma \sim 1.4$ ADC
- artificial dip in spectrum from CM correction on only 10 channels

HV scan (HD board)

- Beetle1.2
- □ HV: -750...-900V
- □ uncorrected pedestal width: $\sigma \sim 4.5$ ADC

- CM corrected pedestal width:
 - $\sigma \sim 1.4 \text{ ADC}$
- clear single photon signal
 gain doubles every ~50V

RICH meeting, CERN, 02.10.2003

Beetle Readout Calibration

- Voltage step: 0.0V,0.5V,...5.0V,5.5
- Error: +0.025V... +0.2V
- Rise time: <10ns
- Ringing: within 25ns
- Attenuation: 400 +10
- C_{eff}: 3.0 ±0.1pC
- $1V: Q = CV = 47+2.3 \text{ ke}^{-1}$ = ~150 mV
- 1 photoelectron >
- Linear description up to 2.5V (2.5 photons)
- Quadratic description beyond

Equipped boardBeetle

Cluster Setup

Cluster Setup

Interface Board was missing...

Saturation in Testbeam data

□ A) differential amplifier

- gain 10 seems too much for our signals
- easy fix:
 - gain 5
 - remove serial 50Ω
 - ➔ total gain maintained
 - → dynamic range doubled

B) FED

- Edinburgh FED was configured single-ended, unipolar
- conversion to differential OK, but still unipolar (no level shifters), i.e. 0...0.75V instead of $-0.75...0.75V \rightarrow 8$ -bit $\rightarrow 7$ -bit reduction
- □ ... at least the two devices match...

RICH meeting, CERN, 02.10.2003

Timing of Beam Photons

- adjusted average timing between beam photons and Beetle clock
 - 25ns jitter
 - measured by TDC
- aim to sample at peak of signal
 - adjustment for average by cable delay

Result of Timing Optimisation

- made from Cherenkov Ring
 - Air 960 mbar
 - no lenses
 - HV = 800 V
 - 8 8-stage MaPMTs
 - 5 Beetle 1.2

narrow distribution

- as one expects
- indicates shape of analog pulse signals at sampler in the Beetle

Noise in Beetle1.2

□ final noise level

- after DC-offset tuning
- after tuning of timing

□ full cluster

- 6 boardBeetle1.2
- 9 8-stage MaPMT

□ from pedestal run

- before CM correction
- shape due to baseline of Beetle1.2
- → low σ (1.0...1.5 ADC)
 → no CM problem
- uniform offsets

RICH meeting, CERN, 02.10.2003

Noise in Beetle1.2MA0

□ final noise level

- after DC-offset tuning
- after tuning of timing

half cluster

- 3 boardBeetle1.2MA0
- 6 12-stage MaPMT

□ from pedestal run

- before CM correction
- lower σ for charge divider (1.0 ADC)
- even lower σ for attenuator (0.5 ADC)
- uniform offsets

RICH meeting, CERN, 02.10.2003

CM Suppression in Beam Run

□ from CF₄ beam run

- HV= 800V
- cluster of 8-stage
 MaPMT with Beetle1.2

common mode correction:

- on boardBeetle ~20%
- as the noise already is as good or better than with CM correction for the Heidelberg board

Single Events

- Cherenkov photons
- □ CF₄: 800mbar
- 8-stage MaPMT & Beetle1.2
- □ HV = -900V
- □ with lenses

Cherenkov Rings

- Cherenkov photons (from raw data)
 - beam: -10 GeV \rightarrow mostly π -
- 8-stage MaPMT & Beetle1.2
 - with lenses; HV = -900V (from HV scan)

Binary Readout

□ Study of single channels in Oxford lab: Beetle1.2MA0

- part of S-curve, as negative DC-offsets are not accessible in Beetle1.2:

- □ at testbeam: threshold scan of cluster of Beetle1.2
 - work unfinished: results not yet understood
 - more lab-studies needed

4x4 Shield

20 Gauss ambient transverse field

- Cut through the centre of the XY-plane at Z=230mm

4x4 Shield: transverse field

20 Gauss ambient transverse field

Cut through the centre of the XY-plane at Z=230mm

4x4 Shield: longitudinal field

RICH meeting, CERN, 02.10.2003

RICH meeting, CERN, 02.10.2003

Longitudinal B-Field

RICH meeting, CERN, 02.10.2003

Conclusions

2003/09/14 06.25

- □ Beetle1.2 & Beetle1.2MA0:
 - functionality proven in lab tests
 - no noise/CM problem anymore
- □ boardBeetle:
 - noise excellent, almost no CM
- □ the testbeam was a success:
 - Beetle1.2 & 8-stage MaPMT comprehensively tested
- expected magnetic field will be no problem to MaPMTs
- □ issues:
 - binary studies only started
 - Beetle1.2MA0 not fully tested

file=r578.rz pmt=0 evts=10245 Si hits=93078 pmt hits=143555 cut: 5 sig

Thanks to all the people who made this result possible!!!

Spare Slides

Cross-talk from Header to First Channel

- clear correlation of pedestal of first channel with state of last header bit:
 - header high
 - header low
- due to daisy chain of power cables:
 - voltage drop along chain
 - the lower the voltage, the more pronounced the sensitivity to the header

Beetle1.2MAO cluster test (quick shot)

- □ cluster of 6 12-stage MaPMT & 3 boardBeetle1.2MA0:
 - time too short to get it to run properly
 - only ring fragments

RICH meeting, CERN, 02.10.2003

Pitch adapter I

- □ Pitch adapter is irregular: due to accident in submission
 - − design was sent in low accuracy → rounding errors & shorts
 - layout altered at CERN to fix shorts (but not the rounding errors...)
 - not communication back to IC
 - so this structure only was found at bonding...
- □ Cause of cross-talk??

Pitch Adapter II

RICH meeting, CERN, 02.10.2003

3-bit comparator in Beetle1.2

from discussions with Hans Verkoojien:

RICH meeting, CERN, 02.10.2003

5-bit comparator in Beetle1.3 (08/2003)

□ from discussions with Hans Verkoojien:

RICH meeting, CERN, 02.10.2003

MaPMT signal shape measurement

12-dynode MaPMT @ HV = -1000V

(nominal gain: 3.3M e⁻)

- **direct to scope (50** Ω)
- average of time measurements
- ~5000 single photon events (stray light)
- ightarrow av. fall time: 1.1ns
- \rightarrow av. rise time: 2.7ns
- ightarrow av. pulse width: 2.6ns

□ 12-dynode MaPMT @ HV = -1000V (nominal gain: 3.3M e⁻)

- $\Box \quad \text{direct to scope (50}\Omega) \rightarrow \text{density plot}$
- □ ~5000 single photon events (stray light)
- □ ~5000 pedestal events
- ightarrow signal shape
- \rightarrow signal walk

ightarrow input to simulations by Nigel Smale

