LHCDb Collaboration LHCb 2004-016 RICH
26" March, 2004

Analysis of Signal Spectra of Multianode Photo
Multiplier Tubes

R. Cikoski, S. Eisenhardt', F. Muheim
University of Edinburgh

Abstract

The signal response of Multianode Photo Multiplier Tubes (MaPMT) is studied. The pulse height
spectra of MaPMT are fitted with three different methods. The first method is based on Gaussian
distributions for the signal, the second method is based on Poissonian signal distributions and the third
approach includes a possible production of photoelectrons at the first dynode. The simulation of MaPMT
pulse height spectra is discussed with the additional feature of a possible inhomogeneity in the electron
multiplication probability across the surface of the first dynode. The signal loss below a threshold cut
is measured with three methods.
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1 Introduction

Multianode Photomultiplier Tubes (MaPMT) have been evaluated by the LHCb collaboration as tech-
nology for the RICH photodetectors [1, 2, 3]. In preparation of the proposal [4] the performance of
the MaPMT as a photo detector was studied. Preliminary results from the tests carried out with light
emitting diodes (LED) and using a CAMAC readout were described in [5]. Tests carried out with a
LHC-speed readout in a testbeam environment were reported in [6].

In reference [5] the analysis of the signal spectra recorded with MaPMTs used a relatively simple
fitting algorithm based on Gaussian distributions for the signal components allowing zero to three pho-
toelectrons. This approach was easy to implement and rather fast in computing. But it turned out that
the yield of signal events was strongly underestimated by this fit in the region above the pedestal. This
caused a bias in the determination of the average single photoelectron signal. As a simple fix at that
time the distortion of the fit results was reduced by removing the badly described region from the fit.
This allowed an approximate determination of the average single photoelectron signal. But the shape
of the signal spectra was not understood and the results depended on the definition of the exclusion
region. This dependency dominated the uncertainty in the determination of the signal loss caused by a
threshold cut. Which is why no results on the signal loss were given in reference [5].

This note summarises our study of improvements to the description and understanding of the MaPMT
signal spectra. The MaPMT data used in this study was taken originally with a CAMAC readout [5].
A comprehensive description of the used MaPMT and the used CAMAC readout can be found in [7].
The data analysis in [7] makes use of the improved algorithms discussed in this note.

Three improvements in the description of the signal spectra were made. For the signal components
generated by one or two photoelectrons the Gaussian distributions were replaced by Poisson distributions.
Additional signal contributions were introduced following references [8, 9]. They model an assumed
photon conversion at the first dynode for photons which pass the semi-transparent photocathode without
photo-conversion. These signals miss out the first multiplication stage and their charge is smaller by the
average gain at the first dynode when compared to the signals of photoelectrons originating from the
photocathode. Finally, an inhomogeneity of the electron multiplication capability of the dynode material
would smear out any distribution of the signal produced at a particular dynode. Signal spectra taken
with an MaPMT were compared to simulations with a selection of the three effects enabled. Only the
first two effects, but not the inhomogeneity, finally were implemented into a fitting algorithm and tested
against the data.

2 Algorithms for Fitting and Simulation

In this section the used algorithms are discussed in detail. Their implementation is documented in
section 6 (Appendix A).

2.1 Signal Spectrum made from Gaussian Distributions

A simple and fast way to approximate the shape of the signal spectrum of a MaPMT channel is based
on the following assumptions:

1. A major fraction of events in the spectrum are noise events, i.e. events without a charge pulse of
the MaPMT as no photoelectron was produced, like when the high voltage supply to the tube is
turned off. Thus the noise peak is a distinct feature of the signal spectrum and can be determined
reliably by the fit. This certainly works if the fraction of noise events is 40 % or more.

2. The noise distribution is Gaussian shaped, i.e. a convolution of the electronic noise sources of the
data acquisition chain, while asymmetric components like jumps or common mode are insignificant
or corrected for:
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where G is the noise distribution, Ny is the number of noise events, Qy the pedestal position, i.e.

the average pulse height z of a noise event, measured in ADC counts, and oo the pedestal width,
i.e. the total noise of the data acquisition system.

Go(x) ) = No - G(x,Qo,00) (1)
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3. The probability to generate photoelectrons at the photocathode of an MaPMT is governed by
Poisson statistics:
pte
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where N, is the number of events with a signal originating from n photoelectrons, N is the total
number of events in the signal spectrum and p is the parameter of the Poisson distribution, i.e. the
average probability of producing a photoelectron. This definition explicitly includes the pedestal
events with n = 0.

4. The gain of a MaPMT, especially after the first few dynodes, is high enough that the statistical
process of the electron multiplication at the dynodes can be approximated by Gaussian statistics.
Hence the final distribution of a signal of n photoelectrons is a Gaussian distribution as it is a
convolution of all the signal distributions at the individual dynodes:

Gu(z) = N, -G@,Qo+Qn,02+02) with n>0

S(x) = >, Gnl)

where N, is the number of events of signals originating from n photoelectrons, @,, is the average
mean pulse height of a n-photoelectron spectrum after subtraction of the pedestal @)y and o, is the
corresponding width of this signal contribution which gets folded in with the electronic noise oy.
The sum S(x) describes the full signal spectrum.

(3)

5. Events with multiple photoelectrons (n > 2) can be regarded as the superposition of n coincident
events of one photoelectron. Thus, due to the Gaussian shape of each contribution, the charge of
the n signals is summed and the width is summed in quadrature:

Qn=n-Q and ol=n-0f & o,=n-o; (4)

The strength of this model is that is has a few simple assumptions which allow a computationally fast
implementation. This implementation is documented in the Appendix section 6.1.

The limits of this model basically are twofold. Assumption 4 is not a good approximation for the case
we want to study. The average probability p for producing a photoelectron is usually smaller than one.
In this case mostly events with n < 2 photoelectrons contribute to the signal spectrum. The statistical
process of the emission of secondary electrons at dynodes of photomultipliers can be described by a
Poisson distribution P (), like the emission of photoelectrons off the photocathode. A is the average
number of emitted electrons, or the gain g; at dynode j. The average gain at the first dynode of a
MaPMT in our application may vary in the range 4 < g; < 12, depending on the configuration of the
voltage divider chain and the applied high voltage. Using the phenomenological gain model described
in section 2.4 we expect g; ~ 7 for our default setting with HV = —900V. The Poisson distribution
can be approximated well by a Gaussian distribution for values of A > 10. But for average gain values
as low as g1 ~ 4 at the first dynode the approximation is not good enough as the Gaussian distribution
fails to describe reasonably well the shape of the signal distribution. At later dynodes the total number
of electrons is large enough for the Gaussian approximation to be good. Thus the signal distribution
at the first dynode is Poissonian and it gets folded with as many Gaussian distributions as there are
remaining dynodes in the photomultiplier. The Poissonian shape therefore remains visible in the final
signal spectrum. Hence a better description of the total signal spectrum has to account for the Poissonian
nature of the electron multiplication as the first dynodes. This is what the algorithm described in section
2.2 is doing.

The second limitation of this algorithm is that additional physical processes may contribute to the
total signal spectrum which are not accounted for. When the model is compared to data the data
show an excess of events in the region between the pedestal and the MaPMT signal peak. Apart from
incomplete signal sampling, i.e. a problem in the data acquisition setup, two other processes are worth
to be considered.

There is a probability of photons passing through the semitransparent photocathodes of the MaPMT
without producing a photoelectron. Instead such photons may produce photoelectrons when hitting the
surface of the first dynode. Signals of such events would lack the electron multiplication at the first
dynode. Hence their pulse height would fill the gap between pedestal and signal peak of the spectrum
made of the signals subject to the full multiplication chain. An algorithm implementing this possibility
is described in section 2.3.
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In addition there is the possibility that the capability of the electron multiplication varies over the
area of the dynodes, e.g. due to variations in the properties of the semiconductor layer. This would
mean that the signal spectrum would effectively be a superposition of many signal spectra with varied
gain and therefore its shape would be smeared out. As such a behaviour was studied in simulations
which have been compared to the data. In section 2.4 the algorithm is discussed which was used for the
simulation of this effect.

2.2 Signal Spectrum made from Poisson Distributions

This algorithm builds on top of the Gaussian based algorithm defined in the section 2.1. By replac-
ing the assumption 4 with assumption 6 defined below the validity of the algorithm is extended. Its
implementation is documented in the Appendix section 6.2. This is equivalent to the definition in [8, 9]:

6. The gain at the first dynode of the MaPMT might be too low to be reasonably well approximated
by a Gaussian distribution. In our study this dominantly happens when only n = 1 or n = 2
photoelectrons contribute to the signal spectrum. For a higher photoelectron multiplicity the total
number of electrons emitted at the first dynode exceeds 10 in average and the approximation by a
Gaussian distribution is good enough. Equation 3 therefore has to be replaced by:

Nn Xm0 Wn#G(m,Qo+mQ2,U§+mU§) n=12
Gn(r) =
Gn(z) as defined in equation 3 n>3 (5)

S'(z) = X, 9.

where Q2 is the mean average pulse height, in ADC counts, of an electron emerging off the 15¢
dynode and impinging on the 2"? dynode?, oy is the corresponding width of the distribution in
the Gaussian approximation, K; = @Q1/Q2 is the signal gain at the 15 dynode and m is running
over the number of electrons produced at the 1* dynode. The sum S’(z) describes the full signal
spectrum.

This definition introduces two new fit parameters ()2 and o9 representing the average mean pulse height
and width of sub-signal distributions of electrons emerging off the first dynode, regardless of how they
are produced. This sub-signal again is approximated by a Gaussian distribution. A Poisson distribution
here would give an even more realistic description but also would need a further fit parameter (03 and
would slow down the fitting time considerably by adding another level of loops.

This model gives a more realistic description of the signal spectrum than the Gaussian model presented
in section 2.1. An additional strength of this model is that by fitting @); and Q- independently it gives
insight into an essential internal property of the MaPMT, namely the gain at the first dynode K. It
also provides a platform to implement additional electron production mechanism at the first dynode, as
will be seen in section 2.3.

This algorithm approximates the shape of the signal spectrum with Gaussian distributions only if
more than two photoelectrons are produced. Thus the width oy is determined by oy = ¢, /n with n > 3.
This is meaningful only if there is a significant number of events with a gain > 3 - ()1 in the spectrum,
i.e. the average multiplicity of photoelectrons is high enough. Otherwise the fit result for o; will become
arbitrary.

2.3 Adding the Photoconversion at the First Dynode

Based on the model using Poisson distributions presented in section 2.2 one can easily add the effect
of a photoconversion at the first dynode. This may happen when a photon passes the semi-transparent
photocathode, hits the semiconducting surface of the first dynode and causes the release of an electron
via the photoeffect.

In this case the assumptions 3, 6 and 5 have to be extended to assumptions 7, 8 and 9, respectively,
in the following way:

2This follows the logic that Q1 is the total gain of an electron emerged off the photocathode and impinging on the 15t
dynode. Hence, the symbols Q2 and o2 have different meanings in the context of the Gaussian and the Poisson fit models.
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7. The probabilities to generate photoelectrons at the photocathode or the first dynode of an MaPMT
are governed by Poisson statistics and are independent, of each other:

l‘l’n e M lJ’k e M oo X
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where N ;L ¢ is the number of events with a signal originating from n + k photoelectrons originating
from the photocathode (n) and from the first dynode (k), N is the total number of events in the
signal spectrum and p and p; are the means of the Poisson distributions, i.e. the average probabilities
of producing a photoelectron at the photocathode () or at the first dynode (u1). This definition
explicitly includes the pedestal events where n + k = 0.

8. As for equation 5 it is assumed that a Poisson description is needed for the cases n = 1,2 and a
Gaussian distribution is sufficient for n > 3. To avoid another nested loop in the fitting routine
Gaussian distributions are used for all k. So equation 5 will become:

N1 S WED e G Qo + (m+ k)@, 03 + (m + k)od) n=1,2
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where the sum S”(z) describes the full signal spectrum.

9. Events with multiple photoelectrons (n + k > 2) can be regarded as the superposition of coincident
events of n-times one photoelectron produced at the photocathode and k-times one photoelectron
produced at the first dynode. Thus, due to the Gaussian shape of each contribution, the mean pulse
height @y, 1 of the n + k signals, measured in ADC counts above the pedestal, is summed and the
width o, 5 is summed in quadrature:

Qni=n-Q1+Fk-Q and ai,k:n-af-%k-ag (8)

The implementation of this algorithm is documented in the Appendix section 6.3.

2.4 Inhomogeneity of First Dynode

If the electron multiplication capability of the first dynode would vary across its surface effectively a
superposition of signal spectra with different gain would be measured. As the gain at the first dynode
varies the width of the effective measured signal is broadened. This behaviour cannot be fitted reliably
together with the determination of the average total gain and the gain at the first dynode. As if another
variation of these parameters is introduced to the fit arbitrary return values occur. Hence the effect of
a possible inhomogeneity of the first dynode was studied in simulation only.

Two approaches for the simulation of the MaPMT signal spectra were used. In the first approach
one of the fitting algorithms described above was implemented. The Gaussian and Poisson distributions
were implemented by random number generators of the proper functional shape. Their parameters were
taken from actual fits or their variations. A possible inhomogeneity of the gain at the first dynode was
implemented in the following way:

10. The gain on the surface of the first dynode was assumed to vary linearly. For a given distribution to

describe the number of electrons produced at the first dynode, either from electron multiplication
or from photoconversion, the mean value was varied on an event-by-event base like:

91 =9, +RL -G, (9)

where g, is the given mean of the distribution (i.e. K or uq, respectively), R is a random number
in the range [—1,+1] and Z is the strength of the inhomogeneity.
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Figure 1: MaPMT signal spectrum at high gain with Poisson fit and assumed photoproduction at the
first dynode, all contributions to the global fit are shown separately.

The second approach used a phenomenological gain model for the MaPMTs. In this model the gains
of electrons in the whole tube GG and at the individual dynodes g; are:

l l
G=1lo=]]a avf (10)
j=1 j=1

where dV; is the potential before dynode j, k is a material dependent constant defining the slope of
the gain, a is a normalisation constant and [ is the number of dynodes in the tube. In the simulation
the values of the dV; were taken from the experimental conditions of the MaPMT signal spectra, where
they are determined by the applied high voltage and the resistive voltage divider chain. The values for
k and a were fitted to data or variations of these results. Then the gain at the first dynode was varied
as defined in assumption 10.

3 Methods for Signal Loss Determination

In this section different methods for measuring the signal loss below a threshold cut are defined and
discussed. The implementation of the algorithms is documented in section 7 (Appendix B).

Consider signal spectra like in figures 1 and 2 which have been fitted with the Poisson based algorithm
and the assumption of photoconversion at the first dynode as described in section 2.3. The global fit
is drawn as well as the contributions which belong to the pedestal, the single and double photon signal
from the photocathode and the single and double photoelectron contribution form the first dynode. The
difference between the two spectra is the gain of the signal, i.e. how well the signal is separated from
the pedestal. This determines how many signal events are lost if a threshold cut is applied to separate
'signal’ contributions (S) form the 'noise’ (N). A signal loss always is introduced as both contributions
overlap. A threshold cut conveniently is defined as:

S>Qo+T- 0o (11)

where T is selecting the minimum separation of a ’signal’ from the noise position @ in terms of the
noise width og. For our studies mostly 7' = 5.0 was used as default.

There are three independent quantities in the fit parameters which can be used to determine signal
loss:

e the probability of photoelectron production,

e the position and shape of the one-photoelectron distribution and
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Figure 2: MaPMT signal spectrum at low gain with Poisson fit and assumed photoproduction at the
first dynode, all contributions to the global fit are shown separately.

e the shape of the pedestal distribution.

In addition the first two quantities can be defined either by exclusively regarding the photoelectron
production at the photocathode (PC) or by including photoelectron production at the first dynode (D)
as well.

Ag will be seen in the following sections the methods using the three quantities above depend on
different areas of the spectrum and different fit parameters. Thus, the methods are relatively independent
of each other. This allows to cross-check them and possibly a choice can be made of a preferred method
depending on which part of the fit seems most reliable. Table 1 gives an overview of the definitions
discussed in the following sections.

| ph.e. origin || ph.e. probability | 1-ph.e. distribution | pedestal |

PC & D O+ ) ([ s1,pc+s1,0) | ([ pa)
PC La(p) U5([ s1,pC)

Table 1: Overview about signal loss definitions and their dominant dependencies.

3.1 Signal Loss measured with the Photoelectron Probability

The production probability of photoelectrons 7 is used in the first method to measure the signal loss:

N51(f) — N>r14y
Z(ﬁ: T, UO) = >15/<L[)>1(ﬁ)>T

where N> (7z) is the sum over the cases with emission of photoelectrons (n =1,2,...,00) in equation 2,
and N>7,, counts the number of events in the spectrum above the threshold o + T'oyg.

This method depends dominantly on the fitted production probability, zz. The signal loss also depends
on the arbitrary choice of the threshold cut T'oy. With this choice the signal loss also depends on how
well the pedestal was fitted and thus how reliable the threshold is defined (see section 3.3 for a more
detailed discussion on the fit of the pedestal).

The quality of this estimate of the signal loss is expected to be good if the overall number of generated
photoelectrons is well described by the chosen fit method. If, however, not all contributions to the
MaPMT signal are properly regarded by the fit, i.e. if the photoelectron production probability is found
to low, the signal loss will be underestimated. In such a case the signal loss determined in this way even
can become negative.

The actual loss definition has to state which signal contributions of the fit are regarded. For the
fit algorithms used in this study either only the production of photoelectrons at the photocathode was

(12)
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regarded (7 = p), leading to the definition ¢4, or the production of photoelectrons at the first dynode
was included (7 = p + p1), leading to definition ¢;:

Noi1(p+p1)—N>re

gl(l’f“'l’/laTao’O) = N>1(ptpr)
(13)
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The dominant contributions to the error of these loss definitions arise from the uncertainty of the
expected number of signal events dA>; () and the error made in the event counting 6N>74,. The
second is discussed in section 3.4. They are combined by error propagation:

N ’ 2
_ >Tog 1
(5(1’4 = < N2, (5N>1> + (N;(SNZTUO)
- (14)
where
ON>1(R) =  Ne “éu and O = \/Op? + op? or o = dp

depending on the chosen definition. du; and dp are the errors returned by the fit procedure for the
parameters pu1 and pu, respectively. This error estimate neglects the small contribution of the errors for
the pedestal position and width which define the position of the threshold.

3.2 Signal Loss measured with the One-Photoelectron Distribution

The second handle to define signal loss is based on the integrals over the single photon contribution to
the MaPMT signal:

o~ s1(x)de — fon+TJO s1(z)dx
fooo s1(x)dx

t(fs1(z),T,00) = (15)

where z is the pulse hight of the signal and s;(z) is the number of events assigned by the fit to the
single photoelectron contribution in the bin dz. The term in the denominator counts the total number
of events assigned to the single photon contribution and the second term in the nominator only starts
counting above the threshold Qo + T'og. Defined in this way the signal loss is restricted to the range
[0...1].

The quality of this signal loss estimate depends mainly on whether the shape and position of the single
photoelectron contribution to the signal s;(z) is well represented by the fit. As before in section 3.1, the
signal loss also depends on the arbitrary choice of T' to define the threshold cut. And in the same way
this choice depends on how well the pedestal was fitted and thus how reliable the threshold is defined. In
addition this method neglects the signal loss of multi-photoelectron contributions s, (z), with n > 2. For
small photoelectron multiplicities &z such contributions to the signal loss are small and a good estimate
is expected by this method. This way it provides a direct estimate of the probability of loosing a single
photoelectron. If data spectra with larger photoelectron multiplicities i are studied signal contributions
with larger n can be added.

For the fit algorithms used in this study either only the production of photoelectrons at the photo-
cathode was regarded (s1 = s1 pc), leading to the definition ¢5, or the production of photoelectrons at
the first dynode was included (s1 = s1,pc + s1,p), leading to definition £»:

oo

fow Sl,Pc(w)-i-Sl,D(x)dm—f

Qu+Tog
fo s1,pc(z)+s1,p(z)dz

81,Pc(w)+81,D(:t)dm

([ s1,pc + 51,0, T,00)

foo S1,Pc(z)dm*foo - s1,pc(z)de
65(.[ S51,PC, T7 00) = - foo 81 I?CO-('—;)d(;
0 .

The dominant contributions to the error of these loss definitions arise from the uncertainty of the
weight of the single photoelectron contribution §/; and the error introduced by the definition of the
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threshold cut 0I;>74,. The errors are combined by error propagation:

0o s = \/(ISZI?O 513)2 + (%6[827‘0’0)2

where
I, = fooo sidx
ISZTUO = fQOZ+T00 Sldl‘
oI, = N(1-e) (%ﬁ)2 +(%Z)? (17)
0I>1ey = O, 12T
and ’
o =\/6u? +ou? or  Su=du
(532(502 or (552(501

depending on the chosen definition. duq, dp, doy and doy are the errors returned by the fit procedure for
the parameters 1, i, oo and oy, respectively. Choosing §G = doy in the case of f3 neglects the minor
contributions of do; but eases the computation. The error on the uncertainty of the fitted gain @)1 may
be neglected if the signal contributions of the spectrum are described well by the fit. If included it were
to enter as a factor (6Q1/Q1)? in the expression for 6/;>74,. The error also neglects the even smaller
contribution of the errors for the pedestal position and width which define the position of the threshold.

For a Poisson based algorithm the fit of o7 and thus its error becomes unreliable if the average gain
is to low, as discussed in section 2.2. A way out is the calculation of oy from other fit parameters. If
the fit algorithm is used which also regards photoconversion at the first dynode o; can be obtained by
using the relation of the width and gain of a Poisson distribution in a MaPMT [8]:

> _ 24 1 1
o5 = Qj (E"'KjKHl"'“""K]—K,) (18)

with the j looping over the amplification stages of the MaPMT as in equation 10 and a generalised
definition of K; = Q;/Qj+1. Some arithmetic gives the following result for o; and the propagated error:

o = G+ Q)
() = s (3 @)50) + (0~ %) 50)" + (Hm00)’)

3.3 Signal Loss measured with the Pedestal Distribution

(19)

The final method to measure signal loss is only depending on the fit to the pedestal and the knowledge
of the shape of the pedestal distribution:

{(pte). ) = NS0 B
0

(20)

where z again is the pulse height of the signal, p(x) is the number of events assigned by the fit to the
pedestal contribution in the bin dz, IV is the total number of events in the spectrum and N<7,, counts
the number of events in the fitted spectrum below the threshold Qg + T'og. Thus, the denominator
estimates the number of total signal events and the nominator the number of signal events below the
threshold.

This method depends on how well the actual pedestal in the spectrum gets described by the pedestal
function in the fit. No knowledge is needed about the shape or size of the signal content of the spectrum.
As before in sections 3.1 and 3.2, the measured signal loss also depends on the arbitrary choice of T to
define the threshold cut.

In this study we assume that the pedestal is of a Gaussian shape. Thus, this method to determine
the signal loss is sensitive to additional noise components as non-Gaussian tails and distortions due to
common mode. In the case of tails the fit would attribute them to the signal and not to the pedestal.
Hence the signal loss would be overestimated. Common mode instead could have various effects depend-
ing on its source and size. If it were a random distribution it would fold with the Gaussian pedestal to
effectively broaden the pedestal distribution. This would increase the effective noise of the system and
thus the signal loss as it pushes the position of the threshold cut to a higher value. If the common mode
instead has a structure it generally is not clear whether a Gaussian fit would under- or overestimate the



3.4 Error of the Event Counting 9

integral of the pedestal as it depends on the actual shape and magnitude of the common mode and the
starting parameters of the fit. But if the structure produces two peaks or a shoulder in the pedestal
distribution it is more likely that the fit would underestimate the integral over the pedestal. In this case
the signal loss would be overestimated. In summary this method is expected to give in this study an
upper limit on the signal loss of all contributions to the signal.

The final loss definition assumes the Gaussian shape of the pedestal distribution pg(x):

N<ro 7f000 pa(z)dz

Z3(IPG7T) = fooopg(z)dz

(21)

The dominant contributions to the error of this loss definition arise from the errors made in the
event counting around the threshold cut 0 N<7,, and the accuracy of the description of the pedestal
distribution 01,. The first is discussed in section 3.4. They are combined by error propagation:

2 Nerog—N 2
oG = \/(ﬁ‘”\’@m) +<|&7m2|‘”f'>

where
L, = [y pclz)ds (22)
o1, = Ne—ﬁ\/(‘fc%‘)f + (‘%)2
and
o = ptm

0Qo and dog are the errors returned by the fit procedure for the parameters QQg and o as defined in
section 2.1 equation 1. The contribution of §@Q)¢ is small and may be neglected.

3.4 Error of the Event Counting

N>t1oy

For a single measurement with N events the number of events above or cut
below a threshold cut S > Q¢ + T'oy has a binomial error:
6N2Ta'0 = 6N§T00:VN'p'q
where (23) AN
N

p:—N and q:l—p:—NSJ\I;UO

\
|
\
\
|
In addition the signal spectra have a finite bin size and the cut position }
generally falls between the two bin centres i and i + 1 with the event counts |
N(i) and N(i+ 1), respectively, cf. figure 3. The cut takes place in a region \
were the number of events per bin can be large. This happens especially }
for signal spectra with low gain and a significant contribution of signal |
events right above threshold, e.g. from photoelectrons generated at the first }
dynode. Figure 2 shows such an example spectrum. A linear interpolation |
of the spectrum between the two bin centres, depicted as dashed line in '
figure 3, improves significantly the error made in the event counting above |
and below the threshold cut. An upper estimate to the remaining error is:
ON>76, = 0N<106, = M ) (24)
i.e. this estimate assumes that the difference of the shape of the physical
distribution and the linear interpolation is not larger than one of the trian-
gles between the linear interpolation and the bin borders. This is a good
assumption as in MaPMT spectra with small gain the bin content N (i) and
N(i+1) are large and their associated statistical error small. In spectra with large gain the bin contents
are small and the statistical error increased but the absolute error will be small.
An estimate shows that for low gain spectra the remaining error caused by the finite bin size may
become of the order of the binomial error. Therefore both should be regarded and quadratically added.

Figure 3: Possible posi-
tion of threshold cut be-
tween the centres of two
bins and linear interpola-
tion of bin content.

4 Application to Data

4.1 Comparison of fit methods

To better understand the behaviour of the three fit algorithms (Gaussian, Poisson without and with
production of photoelectrons at the first dynode as defined in the sections 2.1 to 2.3) they are applied
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10); with Gaussian fit. 10); with Poissonian fit. photoelectron conversion at the
first dynode.

to the same data set and the results are compared in the following.

The data set was taken with the CAMAC readout described in [7] for a centre pixel of a MaPMT?
operated with a default voltage divider chain at a supply voltage of HV = —900 V. Figure 4 shows the
spectrum of this run with a Gaussian fit superimposed. The same spectrum is shown in figures 5 and 6.
There fits using the Poisson algorithm without and with first dynode effect are superimposed. The fit
results displayed in the figures 4 to 6 are summarised in table 2. The errors given are those returned by
the fit or determined using error propagation if applicable.

| algorithm Gauss Poisson | Poisson & 1°° dynode |

m 0.241 £ 0.004 | 0.240 £ 0.004 | 0.215 £ 0.003

o 0.024 £ 0.002

Q1 93.6 £ 0.9 942 £+ 1.0 103.2 £ 0.9

o1 526 £ 0.8 752 £ 19. 717 £ 5.6

Q- 228 + 1.1 169 + 0.7

P 157 £ 0.5 106 £+ 05

K1 =Q1/Q> 41 £ 0.2 61 =+ 03

g1 > Q}/ot 317 £+ 0.06

Table 2: Parameters returned by the fit methods on the MaPMT spectrum of run 2041.

The production probabilities of photoelectrons found by the three algorithms, x4 and p + g1, match
very well. As will be seen at the end of this section in average the three algorithms exhibit a small
systematic difference in the measurement of 1. But this example provides a convenient common base
for the following comparison of the three algorithms.

The Gaussian algorithm, displayed in figure 4, completely fails to describe the signal spectrum below
the pedestal. In addition the signal is strongly underestimated by the fit in the region between the
pedestal and the single photoelectron peak, between 68 and 100 ADC channels. Signal contributions
which fill this region are not accounted for in the Gaussian fit model. Their presence in the data tends
to pull the measured gain of the single photoelectron distribution, @1, to a lower value.

By using the Poisson algorithm, as shown in figure 5, the description of the region near the pedestal
is significantly improved. This is due to the more physical description of the electron multiplication at
the first dynode by a Poisson distribution which dominates the shape of the full pulse height spectrum.
However, the data between the pedestal and the single photoelectron peak, between 68 and 130 ADC
channels, are still not correctly described by the fit. The mean single photoelectron gain, @1, is pulled
towards a low value as, again, there are no accounts for signal contributions which fill this region. The
gain of the single photoelectron distribution, ()1, is found to be the same value as for the Gaussian fit
method within errors.

By allowing the production of photoelectrons at the first dynode as an additional contribution to
the signal in the fit the overall description of the data improves considerably, as shown in figure 6.
Especially in the region of the valley between the pedestal and the single photoelectron peak the data

3Tube: 9C20A2, pixel: 10, run no.: 2041
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methods.

is now reasonably well described by the fit. The gain @ is measured about 10% larger than for the
other two methods, but it appears more reliable as the shape of the pulse height spectrum is now better
described. A closer look at the region between 68 and 100 ADC channels reveals that the shapes of the
data and the fit still do not match perfectly. This is further studied in section 4.2 with a simulation
of an additional inhomogeneity of the first dynode. The measurement of the signal width, oy, matches
for the two Poisson algorithms. But the increased errors indicate that the determination of oy becomes
unreliable as for these algorithms it is determined from the width of the 3-photoelectron peak. In figures 5
and 6 this peak would be found at around 345 and 370 ADC channels, respectively, where the spectrum
lacks data.

The signal contribution of electrons emerging off the first dynode can be measured in the two algorithms
based on Poisson distributions. When the additional photoconversion at the first dynode is included the
gain and width, Q> and o2, are measured with smaller values. In this case the signal has two overlapping
components and @7 and @ are anti-correlated. The measured gain at the first dynode, K, is about
50 % larger. In addition the width o2 tends to be smaller than for the case of only one signal contribution
emerging off the photocathode.

The measured value of the gain K; &~ 6 using the Poisson fit with the production of photoelectrons
at the first dynode matches reasonably well the expectation of K1 ~ 7 at HV = —900V from the gain
model, described in section 2.4. A compilation of results using this model can be found in [7]. The
low gain value of K; = 4 obtained from the Poisson fit is not compatible with expectation. From the
Gaussian fits the gain is estimated by g1 > Q}/0}. As the Gaussian algorithm tends to overestimate
the width of the single photoelectron contribution, especially if there is an additional contribution to the
signal, the estimator g; is pulled to low values. Thus, it is a lower limit of the actual gain at the first
dynode and the measured value of g; & 3 reflects the failure of the Gaussian fit to describe the shape of
the pulse height spectrum.

These results are confirmed when all 64 pixels of a tube are studied. In Figure 7 we show the
distributions found for the gains K; and g¢; for all pixels of a MaPMT taken at the same conditions as
for figures 4 to 6. The average value of g1 ~ 2 demonstrates that for the Gaussian algorithm the effect
of broadening the signal contribution and pulling the gain to a lower value is even stronger than in the
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Figure 9: MaPMT spectrum of run 2169 (tube:  Figure 10: As figure 9 but now including an inho-
9K20C3, pixel: 10); simulation with Poisson dis- mogeneity of Z = 0.4 in the electron multiplication
tributions and photoelectron conversion at the  probability across the surface of the first dynode
first dynode (dashed line); top: full spectrum, bot-  (dashed line).

tom: zoom into the critical region.

example of figure 4. The gain K; measured for the two methods based on Poisson distributions differs
in average by a factor of two (K; ~ 3 and K ~ 6, respectively).

When studying the signal loss ¢; for the same 64 signal spectra, we find a pattern which is consistent
with the characteristics of the three fit methods. For the Gaussian fit method the average signal loss
is measured to be £; = 10.5%. To be added is the signal loss due to non-multiplication of electrons
at the first dynode. Tt is 0.25% at K; = 6. This leads to the total signal loss ¢; = 10.7% which can
be compared with the other methods. For the two methods based on Poisson distributions the signal
loss due to non-multiplication at the first dynode is an intrinsic part of the loss. The Poisson methods
without and with the production of photoelectrons at the first dynode give an average loss £; = 15.6 %
and ¢ = 13.2 %, respectively. The definition of ¢; is based on the photoelectron production probability
. Therefore it is not dependent on how well the detailed shape of the signal spectrum is fitted. The
Gaussian method tends to exclude the additional entries right above the pedestal and thus, it is likely to
underestimate p and ¢;. As visible in figure 5 the Poisson method likely overestimates the signal content
in the region between the pedestal and the single photoelectron peak and hence, p and #; are found too
high. The Poisson fit which includes the production of photoelectrons at the first dynode gives the best
estimate of the signal content. Therefore it provides the most reliable estimate of the signal loss £;. A
detailed discussion comparing the methods of loss determination is given in section 4.3.

4.2 Simulation results

The Poisson fit including the production of photoelectrons at the first dynode still does not match
perfectly the data in the region between the pedestal and the single photoelectron peak, cf. figure 6. To
test the hypothesis of an inhomogeneity in the electron multiplication probability across the surface of
the first dynode simulations of the signal spectra were performed. The simulation is based on Poisson
distributions including the production of photoelectrons at the first dynode. The inhomogeneity is
added as described in section 2.4, equation 9. Input parameters to the simulation were the parameters
returned by a fit to the data. A variety of values for the inhomogeneity was tested. Each run contained
10 simulated events and was normalised to the number of events in the data spectrum.

In figure 9 a MaPMT signal spectrum is shown superimposed with the simulation with no inhomo-
geneity (Z = 0.0). The statistical error of the simulation is negligible. The simulation closely models the
fit on which parameters it was based on. A mismatch between data and simulation is visible similar to
figure 6.

The inhomogeneity was increased in steps of AZ = 0.1 and the result for Z = 0.4 is shown in figure 10.
It represents the best description of the data. As expected the inhomogeneity smears out the contribu-



4.3 Behaviour of signal loss 13

tions to the MaPMT signal. The underestimated regions get filled up and the overestimated regions are
reduced. The detailed match between data and simulation is much improved and the simulation now
matches the shape of the full data spectrum. At larger values of Z the simulation tends to underestimate
the number of events in the signal peak region and to overestimate the high gain tail of the spectrum
as the single photoelectron distribution becomes to broad. The match between simulation and data
is achieved with a large inhomogeneity of Z = 0.4. This translates into a factor 2.3 difference in the
electron multiplication probability across the surface of the first dynode. In contrast in reference [8] an
inhomogeneity of Z ~ 0.2 was reported to give best results. Although it is not documented there how
this inhomogeneity was implemented into the simulations one can assume that the implementation is
similar to the one presented in section 2.4.

4.3 Behaviour of signal loss

Method and Data sets: To compare and discuss the signal losses /1, ..., {5 introduced in the sec-
tions 3.1 to 3.3 they have been measured for the same series of data as for the study presented in reference
[7]. The full details on the experimental conditions as well as on the used data acquisition hardware can
be found there. For the discussion here it is of interest that most parameters, including the amount of
light shown onto the photodetectors, were kept stable. Only the supply voltage to the voltage divider
chain, i.e. the total gain of a tube, was varied. The study in reference [7] compared three different kinds
of data acquisition electronics: a CAMAC based system, a system based on the APVm chip where the
signals of the 12-stage MaPMTs had to be attenuated in front of the chip to match the dynamic range
and a system where the MaPMT signals were put into the APVm chip directly but the MaPMT were
operated at a very low total gain. Each of these three DAQ systems was operated with three settings of
the voltage divider chain giving a high, medium or low intrinsic gain to the MaPMT at a given supply
voltage. Thus, there are nine sets of data available for each tested MaPMT channel. The signal spectra
were fitted with the algorithm based on Poisson distributions including the production of photoelectrons
at the first dynode, as defined in section 2.3. Then the values for /1, ..., {5 were calculated based on the
fit results.

While conducting the study for reference [7] it was recognised that the probability of photoelectrons
7t is a sensitive fit parameter to judge the quality of the fit. In the chosen experimental conditions
the total gain of the tubes is varied and the light level applied to the photodetector is kept constant.
Reliable fits are indicated if for such a series of signal spectra a constant probability of photoelectrons
is measured. Figure 11 shows the photoelectron production probabilities (label A = ) for the data sets
of interest here. For the data points shown the fits to the spectra were visually inspected and regarded
as sufficiently reliable for a further analysis of the signal loss. In each run series the photoelectron
production probability starts to rise significantly towards low HV supply values. This starts at the point
where the gain in the MaPMT becomes to low for a good separation of the signal from the pedestal.
Such data is excluded from the selections presented here.

General Behaviour: In figures 12 to 15 selected data sets are shown for the signal loss definitions
l1...05. Note that in these displays data points are suppressed if their symbols would cross the frame.
So small values, below ~ 2.5%, are not shown, as are negative loss values which may occur for the
definitions ¢; and /4.

For a comparison of options of data acquisition hardware like in reference [7] the signal loss has to be
plotted against the ratio of signal-over-noise to determine the relative advantages. The signal-over-noise
achieved in the particular system defines where the threshold cut is applied relative to the average pulse
height. An example of such a comparison based on the signal loss definition ¢; is shown in figure 12.
The figure exhibits clearly the different levels of signal loss achieved by the three readout options. For
the following comparison of the properties of the loss definitions it is of interest to compare what results
are obtained in exactly the same signal spectra. For that the signal loss data of figure 12 have to be
viewed against the setting of the supply voltage, i.e. the gain of the tube, like in figure 13.

In figures 14 and 15 the signal loss values ¢; ... /¢5 are shown for two selected, typical data sets. The
filled symbols denote the losses £, f5 and £3 which estimate the full signal loss. The open symbols mark
the losses /4 and £5 which estimate the loss of signal events which have been produced by photoconversion
at the photocathode only. Generally the signal loss increases when the gain is lowered and more signal
events fall below the threshold cut. The gain can be lowered by reducing the supply voltage, as applied
here, or by changing the ratios of the resistor chain distributing the supply voltage to the dynodes of
the MaPMT.
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Figure 11: Control plot with the determined number of photoelectrons generated at the photo cathode
of tube 9C20A2, pixel 10, for the accepted data points data sets using three different data acquisition
systems with three gain options each, from [7].
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Figure 12: Signal loss ¢; of the MaPMT signal due to a threshold cut S > Qo + 509 for the data samples
of figure 11 here plotted against signal-over-noise for comparison of the readout options.
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Figure 13: Same data as in figure 12 but plotted against the supply voltage (gain) of the tube.
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Figure 14: Signal losses /; ... {5 of the MaPMT signal due to a threshold cut S > Qg + 509 for a selected
data set of the data samples of figure 11: tube 9C20A2, pixel 10, high gain resistor chain, standard
attenuation APVm readout.
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Figure 15: Signal losses #; . .. /05 of the MaPMT signal due to a threshold cut S > Qg + 509 for a selected
data set of the data samples of figure 11: tube 9C20A2, pixel 2, high gain resistor chain, CAMAC
readout.

For the APVm data set in figure 14 a ratio of pi/pu ~ 0.5 is found for the signal events which are
described by photoelectrons emerging off the first dynode. These signals have a pulse height which is
lower by the factor k1 = @1/Q2 compared to signals with electron multiplication at the first dynode.
Therefore these signals are much more likely to get lost below the threshold cut. At high gain, above 900V
in figure 14, this loss dominates the total signal loss. The contributions to the signal with a larger pulse
height are very small as visible in the loss found for ¢, and /5 shown with the open symbols. The more
the gain is lowered the more significant becomes the loss of photoelectrons emerged off the photocathode
while the loss of the signal contribution with low pulse hight quickly approaches its maximum.

The definitions ¢, (filled circles) and ¢3 (stars) measure virtually the same total signal loss and confirm
each other. This is due to the good determination of the photoelectron production probability 7z in the
fit and the reliable determination of the pedestal. The definition ¢5 (filled triangles) overestimates the
total signal loss by about 30 %. This is caused by the large number of events between the pedestal and
the single photoelectron peak in the data taken with the APVm readout. As these events are not caused
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by photoconversion at the first dynode but rather by events sampled on the flanks of the signal pulse
the shape of the signal spectrum is not described correctly by the model. In this case the fit has the
tendency to find the position of the signal distributions to low and their width too wide. Thus the signal
loss depending on the shape of the signal distributions gets overestimated.

For the CAMAC data set in figure 15 a ratio of pi/u ~ 0.1 is found. The problem with events
sampled on the flanks of the signal pulse is significantly reduced. As a consequence all estimates of the
total signal loss, ¢1, {5 and ¢35, match well over a wide range in gain. Only towards low gain, below
840V, the algorithm depending on the shape of the signal distributions exhibits again the tendency to
overestimate the signal loss. At these gains the signal-over-noise becomes small and the valley between
pedestal and single photoelectron in the signal spectra disappears. In this case the fit again shows the
tendency to find the position of the signal distributions to low and their width too wide. Although the
total signal loss estimates £; and /> match well over a wide range in gain the estimates for the signal
loss of photoelectrons produced at the photocathode, ¢4 and /5, do not match. This means that the set
of parameters found by the fit for the contribution made by photoconversion at the first dynode, p; and
its position and width, is not consistent with the assumption of the production of photoelectrons at the
first dynode. In the case of the CAMAC data, figure 15, a small fraction of the events also is sampled
incompletely as the arrival time is shifted and the integration of the charge pulse is cut off by the edge
of the gate window. Any real photoconversion at the first dynode is overshadowed by this problem.

Signal Loss measured with the Photoelectron Probability: The two definitions ¢; and ¢4 are
based on the found probability of photoelectrons @z which basically is constant over the run series. Thus,
the found signal loss entirely is depending on the number of signal events found above the threshold cut,
i.e. the gain at which the tube is operated.

The production of more than one photoelectron is regarded in the definitions, cf. discussion of equa-
tion 12. The average number of photoelectrons produced in the presented data is 7w & 0.3. So there is
a chance of ~ 3.5% producing two or more photoelectrons. This is a small effect but the chance in-
creases rapidly to ~ 10 % and ~ 15% for @ = 0.5 and @ = 0.7, respectively. Multi-photoelectron signals
produce in average a larger pulse height than single photoelectron signals and thus are less likely to get
lost below the threshold cut. If the fit describes the shape of the spectrum well the average number
of photoelectrons will be determined correctly including the multi-photoelectron events. Therefore the
definition /; is expected to give a good estimate of the total signal loss for all light levels provided the
fit describes well the shape of the spectrum as it is the case for our data.

Even if the production mechanism for the excess of the low gain signals in our data is not correctly
modelled /; remains a good estimate of the total signal loss since the overall shape of the signal spectrum
is described well. Contrary to that the definition ¢4 gives for our data a too low estimate of the signal
loss of photoelectrons produced at the photocathode. The extra component in the signal spectrum,
represented by pp, is not regarded. Thus, the number of expected events is scaled down by = m fm LAt
large gain where more signal components can be separated from the pedestal this number may become
smaller than the number of events measured above the threshold cut. This results in a negative loss
estimate like for the data with high supply voltage in the figures 14 and 15. The signal loss definition
{4 therefore is a lower limit to the signal loss of photoelectrons produced at the photocathode. It will
approximate f; if the other contributions to the signal spectrum not stemming from photoelectrons
produced at the photocathode vanish or fall below the threshold cut.

Signal Loss measured with the Pedestal Distribution: The signal loss definition /3 is solely
based on the Gaussian fit of the pedestal region. No knowledge of the shape of the signal spectrum is
required. Even the fit to the signal region might fail dramatically to describe the shape of the spectrum.
This method only requires that the pedestal of the spectrum actually has a Gaussian shape, i.e. no other
noise contributions produce distortions or tails (cf. section 3.3 for a discussion of the types and effects
of additional noise contributions). In general it is more likely that the total signal loss is overestimated
with this method rather than underestimated, especially if an ill-shaped common mode can be avoided.
The accuracy of this method can be evaluated by looking at the shape and quality of the pedestals in
dedicated pedestal runs. Therefore the definition /3 is expected to give a reliable estimate of the total
signal loss for all signal spectra provided the pedestal is sufficiently Gaussian shaped and constant in
time.

In our data the pedestal runs to the presented data show no significant deviation from the expected
Gaussian shape. The signal loss found with definition ¢; and ¢35 matches very well: ¢; /¢35 = 1.00 £ 0.02.
This confirms the total signal loss can be determined using the definition £; even if the region of small
gain only is described in a phenomenological way.
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Signal Loss measured with the One-photoelectron Distribution: The two definitions /5 and /5
calculate the integrals over the found contributions to the signal spectrum. Therefore these definitions
are highly sensitive to the found mean position and widths of the contributions. If the fit determines a
slightly lower gain or a slightly larger width of a contribution to the spectrum the signal loss below the
threshold cut increases significantly.

In the presented data the contribution from multi-photoelectron production is small and thus the
corresponding signal loss is negligible. The shape of the one-photoelectron signal produced at the photo-
cathode is bound by the falling tail of the signal spectrum towards the high gains. But towards low gain
its position and width depends on the description of the signal contributions filling the valley between the
pedestal and the single photoelectron peak. If these contributions are not well described the fit shows
the tendency to pull the one-photoelectron distribution towards lower gain and broader width. This
effect becomes very strong when the signal spectrum is fitted with the simpler Poisson based algorithm
which omits the production of photoelectrons at the first dynode, see figure 5. By regarding this photo-
electron production process in the fit the pull on the single photoelectron distribution is much reduced.
Nevertheless, in our data the true shape of the low gain contribution is not well described by the model
and an unquantified pull on the single photoelectron peak remains. As a consequence the corresponding
signal loss /5 has to be regarded as an upper limit of the signal loss of single photoelectrons produced
at the photocathode.

In our data the distribution of low gain signals has a broader shape than assumed by the model
of photoelectron production at the first dynode. In this case the fit shows the tendency to pull the
contribution from the first dynode towards the pedestal and in turn to increase the pull on the single
photoelectron distribution produced at the photocathode. The definition /5 which regards the signal
loss of both therefore overestimates the total signal loss as the loss of both contributions is assigned to
high.

In our data the following typical ratios are found: ¢»/¢; = O(1.15) for CAMAC data and {¢5/¢; =
O(1.5) for APVm data. This matches the experimental conditions: the APVm data were much more
affected by low gain signals due to incomplete signal sampling. In addition at high gains the following
typical ratios are found: ¢5/¢; = 0(0.30) for CAMAC data and ¢5/¢; = 0.15...0.45 for APVm data.
At low gains this ratio is distorted to reach values of £5/¢; > 1 as {5 gets grossly overestimated. The
CAMAC data is less affected by incompletely sampled signals and thus the more reliable data set.
Therefore the value ¢5/¢; = O(0.30) gives an upper limit of the loss of single photoelectrons produced at
the photocathode in our data. This indicates what level of signal loss could be achieved with a readout
not affected by incompletely sampled signals.

5 Conclusion

The signal response of Multianode Photo Multiplier Tubes (MaPMT) has been studied using three
methods to fit the signal spectra: one method based on Gaussian distributions, a second method based
on Poissonian distributions and a third also regarding a possible production of photoelectrons at the
first dynode. The three algorithms were motivated, defined and an implementation was given. The
characteristics of the three definitions were discussed by the means of their application to example data
spectra. The algorithm based on Poissonian distributions and regarding a production of photoelectrons
at the first dynode is able to describe well the shape of the signal spectra in a phenomenological way,
even though the low gain signals were not produced at the first dynode but stemmed from incomplete
signal sampling.

In addition the MaPMT spectra were simulated to study a possible inhomogeneity in the electron
multiplication probability across the surface of the first dynode. In the application to an example signal
spectrum it was shown how conclusions could be drawn on an inhomogeneity of the first dynode in
principle. But the contamination from incompletely sampled signals made the signals of photoelectrons
emerged off the first dynode inaccessible.

Three definitions of signal loss were discussed. As they base on different parameters they are fairly
independent of each other: one is based on the found photoelectron production probability, a second is
based on the shape and position of the found signal contributions and the last is only depending on the
fit of the pedestal. The first two definitions can be varied to include or exclude a contribution of low gain
signals which are assumed to stem from photoelectrons emerged off the first dynode. In the application
to example data sets it was shown that the total signal loss derived from the photoelectron production
probability matches very well the loss derived from the fit to the pedestal. This is due to the fact that
the shape of the signal spectrum and the pedestal were fitted well.
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6 Appendix A

In this section the used Fortran routines for the fitting of the MaPMT signal spectra are documented.
The used parameters have the following meaning;:

e PAW vector par(9): holds the fit parameters

norm: the overall normalisation factor; in our fits usually bound to the number of events in
the spectrum N %+ 0.1 to ease the fit; but this can be an indicator of the quality of the fit when
left free

average: average number of photoelectrons per event for the contribution from the photocath-
ode, u, using Poisson statistics

pedestal: pedestal position, Qg
width_ed: pedestal width, o, i.e. the electronic noise

signal: average size above pedestal of a single photoelectron signal, @)1, with the electron
generated at the photocathode

width_sig: width of the single photoelectron signal, o, for electrons produced at the photocath-
ode; this parameter only returns reliable values if the signal spectrum covers the region where
Gaussian statistics is applicable for the electron multiplication, i.e. for n > 3 in the routines
using the Poisson statistics

fstdynavg: average number of photoelectrons per event for the contribution from the first
dynode, 1, using Poisson statistics

firstdyn: average size above pedestal of a single photoelectron signal, )2, with the electron
generated at the first dynode; it is also the size of the signal fraction of secondary electrons
produced at the first dynode

width-dyn: width of the single photoelectron signal, oo for electrons produced at the first
dynode

e PAW vector fitpar2(6): holds parameters to steer the fit behaviour

1.

3
4.
5

6.

in the signal regions where the fit is disabled (see fitlimits2(4)): (0) let the function return the
value 0.0 (default), (1) let the function return the value of the fitted histogram (from hist1)

(0) x2-fit, (1) maximum-likelihood-fit (default); this parameter actually was used externally in
the call of the fitting function

. minimum number of photoelectrons included in the fit of those generated at the photocathode

maximum number of photoelectrons included in the fit of those generated at the photocathode

. minimum number of photoelectrons included in the fit of those generated at the first dynode

maximum number of photoelectrons included in the fit of those generated at the first dynode

e PAW vector fitlimits2(4): holds the limits to the signal range (i.e. ADC counts) where the fitting
procedure is carried out; this allows for a limitation of the used range at the bottom and the top
end of the signal spectrum as well as for an intermediate range which is excluded from the fit.

o PAW vector hist1(256) or hist1(1024): holds the channel content of the spectrum to be fitted (note:
the channel with 0 ADC counts is stored in the histogram channel 7 due to the definition of the
histogram in Fortran; this is the reason for the definition of izpI).

In order to enable the fit to converge properly it is recommended to generate a set of starting parameters
in the following way:

e norm: number of events in the histogram

e guerage: approximation of expected average number of photoelectrons per event originating from
the photocathode depending on the amount of light

e pedestal: histogram channel with highest number of entries, provided events with n = 0 dominate

e width_ed: approximation of typical pedestal width
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e signal: mean of the histogram where the pedestal has been removed (e.g. by a 5 x o-cut above the
pedestal)

e width_sig: RMS of the histogram where the pedestal has been removed

e fstdynavg: approximation of expected average number of photoelectrons per event originating from
the first dynode depending on the expected ratio to average

e firstdyn: expected location above pedestal of this contribution to the total signal spectrum, scaled
as ()2 = @1/ K1, the signal size over the expected gain at the first dynode

e width-dyn: scaled as 05 = 01 /K, which seems close enough to converge safely
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6.1 Gauss based algorithm

FUNCTION phe_gauss(x)
* Fitting Gauss functions to photoelectron spectra from a MaPMT

Double Precision norm,average,pedestal,width_ped,signal,width_sig
Integer fpl,fp2,fp3,fp4

Integer ixpl, ifirst, j, n

Real fact(20), facttemp, factn, area

data ifirst/1/
common/pawpar/par (9)
vector fitpar2(6)
vector fitlimits2(4)
vector histl

norm = par(1) ! normalisation factor

average = par(2) ! average number of p.e. per event

pedestal = par(3) ! position of pedestal

width_ped = par(4) ! width of pedestal

signal = par(5) ! offset from pedestal to single p.e. signal
width_sig = par(6) ! width of single p.e. signal

* Loop over number of p.e. (0 for pedestal)

fpl = int(fitpar2(1))
fp2 = int(fitpar2(2))
fp3 = int(fitpar2(3))
fp4d = int(fitpar2(4))
ixpl = int(x+1)

phe_gauss = 0.
* Calculate vector of factorials

if ( ifirst.eq.l ) then
facttemp = 1
fact(1) =1
do j = 1,19
facttemp = facttemp*REAL(j)
fact(j+1) = facttemp
enddo
ifirst = 0
endif

* Check for valid fit region and loop over photoelectrons

if ( x.1t.fitlimits2(1) .or.
& x.gt.fitlimits2(4) .or.
& (x.gt.fitlimits2(2) .and. x.1lt.fitlimits2(3)) ) then

if ( fpl.eq.0 ) then
phe_gauss = 0.
else
phe_gauss = hist1(ixpl)
endif

else
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do n=fp3,fp4d
factn = fact(n+1)

* Contribution for each peak determined using Poisson statistics
area = norm * average**n * exp(-average) / factn

sigma = sqrt(width_ped**2 + REAL(n)*width_sig**2)
x0 = pedestal + REAL(n)*signal

* Gaussian distribution for each peak
phe_gauss = phe_gauss + area *
& exp(-0.5x(x-x0)**2/sigma**2)/(2.50663*sigma)

enddo
endif

END
Comments:
e the parameter n counts over the number of photoelectrons produced at the photocathode

the shape of the electronic noise, i.e. the pedestal, is assumed to be Gaussian

Poisson statistics is used for the number of the photoelectrons, i.e. their generation

the shape of the signal distribution is assumed to be Gaussian, the key feature of this routine

the fitting parameters are defined as Double as fits with only Real parameters had an increased
tendency to fail to convert; /27 is given as a fixed rounded value
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6.2 Poisson based algorithm

FUNCTION phe_poiss(x)
* Fitting Poisson functions to photoelectron spectra from a MaPMT

Double Precision norm,average,pedestal,width_ped,signal,width_sig
Double Precision firstdyn, width_dyn, fstdynavg, K1

Integer fpl,fp2,fp3,fp4

Integer ixpl, ifirst, j, n, m

Double Precision fact(40), facttemp, faktn, faktm

Double Precision arean, aream, areatot

data ifirst/1/
common/pawpar/par (9)
vector fitpar2(6)
vector fitlimits2(4)
vector histl

norm = par(1) normalisation factor
average = par(2)
pedestal = par(3)
width_ped = par(4)
signal = par(5)
width_sig = par(6)
fstdynavg = par(7)
firstdyn = par(8)
width_dyn = par(9)

average number of p.e. per event

position of pedestal

width of pedestal

offset from pedestal to single p.e. signal
width of single p.e. signal

average number of p.e. created by 1st dynode
position of 1st dynode p.e. signal

width of 1st dynode signal

* Loop over number of p.e. (0 for pedestal)

fpl = int(fitpar2(1))
fp2 = int(fitpar2(2))
fp3 = int(fitpar2(3))
fp4d = int(fitpar2(4))
ixpl = int(x+1)

K1 = signal/firstdyn

phe_poiss = 0.
* Calculate vector of factorials

if ( ifirst.eq.1 ) then
facttemp = 1
fact(1) =1
do j = 1,39
facttemp = facttemp*REAL(j)
fact(j+1) = facttemp
enddo
ifirst = 0
endif

* Check for valid fit region and loop over photoelectrons
if ( x.1t.fitlimits2(1) .or.
& x.gt.fitlimits2(4) .or.

& (x.gt.fitlimits2(2) .and. x.1lt.fitlimits2(3)) ) then

if ( fpl.eq.0 ) then
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phe_poiss = 0.
else
phe_poiss = hist1(ixpl)
endif
else
do n=fp3,fp4
factn = fact(n+1)

arean = norm * average**n *x exp(-average) / factn
if (n.eq.0 .or. n.gt.2) then

sigma = sqrt(width_ped**2 + REAL(n)*(width_sig**2))
x0 = pedestal + REAL(n)*signal

phe_poiss = phe_poiss + arean *
& exp (0.5 (x-x0) **2/sigma**2)/(2.50663*sigma)

else
mhigh = n*x10 + 10
do m=0,mhigh
factm = fact(m+1)

aream = (REAL(n)*K1)#**m * exp(-REAL(n)*K1) / factm
areatot = arean * aream

sigma = sqrt(width_ped**2 + REAL(m)* (width_dyn*x2))
x0 = pedestal + REAL(m)*firstdyn

phe_poiss = phe_poiss + areatot *
& exp(-0.5%(x-x0) **2/sigma**2) /(2.50663*sigma)

enddo
endif
enddo
endif

END

Comments: see also comments for routine phe_gauss.f in Section 6.1

e with respect to the routine phe_gauss.f this algorithm replaces the assumption of a Gaussian shape
of the signal distribution with a Poisson distribution for the case of n = 1 or n = 2 photoelectrons

e for the cases n = 0 (pedestal) and n > 3 photoelectrons still a Gaussian distribution of the signal is
assumed; the approximation for the latter case seems good enough

e the main loop actually sums over the electrons emitted from the first dynode; so n runs over the
electrons emitted from the photocathode and m runs over the electrons emitted from the first dynode
while arean and aream provide the corresponding weights

e fstdynavg has to be held at 0 external to the fit at it has no meaning in this model

e to actually cover the shape of the Poisson distribution well enough the summation is carried out to
Mapaz =N % 10 + 10
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e K is the average signal gain at the first dynode: K;

- @
T Qe
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6.3 Poisson based algorithm including photoconversion at the first dynode

FUNCTION phe_poiss_dyn(x)

* Fitting Poisson functions to photoelectron spectra from a MaPMT
* and allowing for photoconversion at the first dynode

Double Precision norm,average,pedestal,width_ped,signal,width_sig
Double Precision firstdyn, width_dyn, fstdynavg, K1

Integer fpl,fp2,fp3,fp4,fpb5,fpb

Integer ixpl, ifirst, j, n, k, m

Double Precision fact(40), facttemp, faktn, faktk, faktm

Double Precision area, arean, areak, aream, atreatot

data ifirst/1/
common/pawpar/par (9)
vector fitpar2(6)
vector fitlimits2(4)
vector histl

! normalisation factor

! average number of p.e. per event
pedestal = par(3) ! position of pedestal

width_ped = par(4) ! width of pedestal

norm = par(1) !
!
!
!
signal = par(5) ! offset from pedestal to single p.e. signal
!
!
!
!

average = par(2)

width_sig = par(6) ! width of single p.e. signal

fstdynavg = par(7) ! average number of p.e. created by 1st dynode
firstdyn = par(8) ! position of 1st dynode p.e. signal
width_dyn ! width of 1st dynode signal

par(9)
* Loop over number of p.e. (0 for pedestal)

fpl = int(fitpar2(1))
fp2 = int(fitpar2(2))
fp3 = int(fitpar2(3))
fp4d = int(fitpar2(4))
fp5 = int(fitpar2(5))
fp6 = int(fitpar2(6))
ixpl = int(x+1)

K1 = signal / firstdyn

phe_poiss_dyn = 0.
* Calculate vector of factorials

if ( ifirst.eq.1 ) then
facttemp = 1
fact(1) =1
do j = 1,39
facttemp = facttemp*REAL(j)
fact(j+1) = facttemp
enddo
ifirst = 0
endif

* Check for valid fit region and loop over photoelectrons

if ( x.1t.fitlimits2(1) .or.
& x.gt.fitlimits2(4) .or.
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& (x.gt.fitlimits2(2) .and. x.1lt.fitlimits2(3)) ) then

if ( fpl.eq.0 ) then
phe_poiss_dyn = 0.
else
phe_poiss_dyn = histl(ixpl)
endif

else

do n = fp3,fpd
do k = fp5,£fp6

nphe = n + k

factn = fact(n+1)

factk = fact(k+1)

arean = averagex*n * exp(-average) / factn
areak = fstdynavg**k * exp(-fstdynavg) / factk
area = norm * arean * areak

if (n.eq.0 .or. n.gt.2) then

sigma = sqrt(width_ped*#*2 + REAL(n)*(width_sig#**2) +
& REAL (k) * (width_dyn**2))
x0 = pedestal + REAL(n)*signal + REAL(k)*firstdyn

phe_poiss_dyn = phe_poiss_dyn + area *
& exp(-0.5%(x-x0) **2/sigma**2) /(2.50663*sigma)

else
mhigh = n*x10 + 10
do m = 0, mhigh

factm = fact(m+1)
aream = (REAL(n)*K1)**m * exp(-REAL(n)*K1) / factm
areatot = area * aream

sigma = sqrt(width_ped**2 +
& (REAL (m)+REAL (k) ) * (width_dyn#**2))
x0 = pedestal + (REAL(m) + REAL(k))*firstdyn

phe_poiss_dyn = phe_poiss_dyn + areatot *
& exp (0.5 (x-x0) **2/sigma**2)/(2.50663*sigma)

enddo
endif
enddo
enddo
endif

END

Comments: see also comments for routine phe_gauss.f in Section 6.1 and routine phe_poiss.f in Sec-
tion 6.2

e with respect to the routine phe_poiss.f again the summation is done for the electrons emitted from
the first dynode, but now an additional contribution for a photon conversion at the first dynode is
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permitted; n counts over electrons produced from photon conversion at the photocathode, k& counts
over electrons produced from photon conversion at the first dynode and m counts over all electrons
emitted from the first dynode

e in the case of n = 0 photoelectrons the signal shape of electrons produced at the first dynode by
photon conversion is still approximated by a Gauss distribution; a description by Poisson could be
allowed by swapping in the condition ((n + k) =0 .or. (n + k) > 2) for (n =0 .or. n > 2)
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Appendix B

In this section the used Fortran routine for the calculation of the signal loss from the fits to the MaPMT
signal spectra is documented. The used parameters have the following meaning:

PAW vector lossthresh(1): defining the position of the cut separating ’signal’ (S) from ’noise’ (N)
in terms of the pedestal position Qg and width oq like: S > Qo + T'og; our default was T = 5.0

PAW vector nhistoch(1): number of channels of the fitted histogram
PAW vector hits(1): number of events in the fitted histogram

PAW vector hist1(256) or hist1(1024): holds the channel content of the fitted spectrum as defined
in Section 6

PAW vector dofitflag(1): used fit option: (2 or 12) Gauss-fit, (3 or 13) Poisson-fit, (4 or 14) Poisson-
fit with photo conversion at the first dynode; the options 12, 13 and 14 are used in the external
routines to signal just the drawing of the function in contrast to options 2, 3 and 4 which actually
called the fitting routine

PAW vector par(9): holds the fit parameters as defined in Section 6, here with the variable names:
norm, npe, ped, sped, phe, sphe, dnpe, dphe, dsphe

PAW vector par_sig(9): holds the errors on the fit parameters

PAW vector fitpar2(6): holds parameters to steer the fit behaviour as defined in Section 6
PAW vector fitlimits2(4): holds the limits to the signal range as defined in Section 6
PAW vector loss(5): holds the returned signal loss for definitions 1, ..., 5

PAW vector loss_sig(5): holds the error of the returned signal loss for definitions 1, ..., 5
del_vxzzz: error of variable zzzz

i-rrrre: integral over variable zzzz

zz_ped: pedestal events

zz_phel: events with 1 photoelectron from the photocathode

xx_pheldyn: events with 1 photoelectron from the photocathode OR 1 photoelectron from the first
dynode

xz_ev_cut: number of events in the histogram below the threshold cut, i.e. counted noise events (N)
zz_cut_ev: number of events in the histogram above the threshold cut, i.e. counted signal events (S)
corr: correction to event count from linear interpolation

cut: cut value T separating ’signal’ (S) from ’noise’ (N); our default was 7' = 5.0

del_sphe_sphe_2: error of signal width (o;) calculated from Q1, Q2 and o9
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7.1 Algorithm for the calculation of signal loss

REAL FUNCTION calcloss()

Integer i,j,Ihistch

Real n_cut_ev, del_n_cut_ev

Real n_ev_cut, del_n_ev_cut

Real del_n_ev_binom

Real i_ped, del_i_ped

Real i_phel, del_i_phel

Real i_phel_cut_ev, del_i_phel_cut_ev
Real i_pheldyn, del_i_pheldyn
Real i_pheldyn_cut_ev, del_i_pheldyn_cut_ev
Real loss_N, del_loss_N

Real loss_N_dyn, del_loss_N_dyn
Real loss_P, del_loss_P

Real cut,corr,del_sphe_sphe_2

Real norm,npe,ped,sped,phe,sphe,dnpe,dphe,dsphe

Real del_norm,del_npe,del_ped,del_sped,del_phe,del_sphe
Real del_dnpe,del_dphe,del_dsphe

vector lossthresh
vector nhistoch
vector hits
vector histl
vector dofitflag
vector par

vector par_sig
vector fitlimits2
vector fitpar2
vector loss
vector loss_sig

Thistch = int(nhistoch(1))

n_cut_ev = 0.0
n_ev_cut = 0.0
i_ped = 0.0
i_phel = 0.0

i_phel_cut_ev =
i_pheldyn = 0.0
i_pheldyn_cut_ev = 0.0

norm = par(1l)
npe = par(2)
ped = par(3)
sped = par(4)
phe = par(5)

sphe = par(6)
dnpe = par(7)
dphe = par(8)
dsphe = par(9)
del_norm = par_sig(1)

del_npe = par_sig(2)
del_ped = par_sig(3)
del_sped = par_sig(4)
del_phe = par_sig(5b)

del_sphe = par_sig(6)
del_dnpe = par_sig(7)
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del_dphe par_sig(8)
del_dsphe = par_sig(9)

# of events above and below cut

j=1
cut = ped+lossthresh(1)*sped
do i=1,Ihistch
if ( i-1.gt.cut ) then
n_cut_ev = n_cut_ev + real(hist1(i))
else
n_ev_cut = n_ev_cut + real(hist1(i))
j=i
endif
enddo

corr = ( real(hist1(j)) + real(histi(j+1)) ) / 2 *
& ( cut+real(l) - (real(j)+0.5) )

n_cut_ev = n_cut_ev - corr
n_ev_cut = n_ev_cut + corr

# of events above and below cut : ’upper’ error estimate

del_n_cut_ev = abs( ( real(hist1(j)) - real(hist1(j+1))
del_n_ev_cut = abs( ( real(hist1(j)) - real(hist1(j+1))

)/ 4)
)/ 4)
binomial error

del_n_ev_binom = sqrt( n_cut_ev * n_ev_cut / (n_cut_ev+n_ev_cut) )

combined error

del_n_cut_ev = sqrt( del_n_cut_ev**2 + del_n_ev_binom**2 )
del_n_ev_cut = sqrt( del_n_ev_cut**2 + del_n_ev_binom**2 )

integral over pedestal

fitlimits2(1) = 0.
fitlimits2(2) = 0.
fitlimits2(3) = 0.
fitlimits2(4) = 1025.
fitpar2(3) =0
fitpar2(4) = 0
fitpar2(5) = 0
fitpar2(6) = 0

do i=1,Thistch
if ( dofitflag(l).eq.l .or. dofitflag(l).eq.11l ) then
i_ped = i_ped + photoel_dr(real(i))
elseif ( dofitflag(l).eq.2 .or. dofitflag(l).eq.12 ) then
i_ped = i_ped + phe_gauss_dr(real(i))
elseif ( dofitflag(l).eq.3 .or. dofitflag(l).eq.13 ) then
i_ped = i_ped + phe_poiss_dr(real(i))
elseif ( dofitflag(l).eq.4 .or. dofitflag(l).eq.14 ) then
i_ped = i_ped + phe_poiss_dyn_dr(real(i))
endif
write (6,*) i,i_ped
enddo
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integral over pedestal : error estimate (ped?,width)

if ( ped.ne.0. .and. sped.ne.0. ) then
del_i_ped = norm * exp( -1.*(npe+dnpe) ) *

& sqrt( (del_ped/ped)**2 + (del_sped/sped)*x*2 )
del_i_ped = norm * exp( -1.*(npe+dnpe) ) *

& sqrt( (del_sped/sped)**2 )

else
del_i_ped = 99999.

endif

integral over 1st photoelectron from PC

fitpar2(3)
fitpar2(4)
fitpar2(5)
fitpar2(6)
do i=1,Ihistch
if ( dofitflag(l).eq.1l .or. dofitflag(l).eq.11 ) then
i_phel = i_phel + photoel_dr(real(i))
elseif ( dofitflag(l).eq.2 .or. dofitflag(l).eq.12 ) then
i_phel = i_phel + phe_gauss_dr(real(i))
elseif ( dofitflag(l).eq.3 .or. dofitflag(l).eq.13 ) then
i_phel = i_phel + phe_poiss_dr(real(i))
elseif ( dofitflag(l).eq.4 .or. dofitflag(l).eq.14 ) then
i_phel = i_phel + phe_poiss_dyn_dr(real(i))
endif
enddo
do i=1,Ihistch
if ( i-1.ge.(ped+lossthresh(1)*sped) ) then
if ( dofitflag(l).eq.l .or. dofitflag(l).eq.11 ) then
i_phel_cut_ev = i_phel_cut_ev + photoel_dr(real(i))
elseif ( dofitflag(l).eq.2 .or. dofitflag(l).eq.12 ) then
i_phel_cut_ev = i_phel_cut_ev + phe_gauss_dr(real(i))
elseif ( dofitflag(l).eq.3 .or. dofitflag(l).eq.13 ) then
i_phel_cut_ev = i_phel_cut_ev + phe_poiss_dr(real(i))
elseif ( dofitflag(l).eq.4 .or. dofitflag(l).eq.14 ) then
i_phel_cut_ev = i_phel_cut_ev + phe_poiss_dyn_dr(real(i))
endif

[
O O = =

endif
enddo

integral over 1st photoelectron from PC : error estimate (1,phe?,width)

del_sphe_sphe_2 = dphe**2 / ( 2xphex*2 * (dsphex*2+dphex*2)**2 ) x

& ( ( ( dsphe**2/dphe + dphe**2 ) * del_phe )**2
& + ( ( phe - phexdsphe*x2/dphex*2 ) * del_dphe )**2
& + ( ( 2 * phe*dsphe/dphe ) * del_dsphe )**2 )

if ( npe.ne.0. .and. phe.ne.0. ) then
del_i_phel = norm * (1.0 - exp( -1.*npe ) ) *

& sqrt( (del_npe/npe)**2 + (del_phe/phe)**2 +
& del_sphe_sphe_2 )
del_i_phel = norm * (1.0 - exp( -1.%npe ) ) *
& sqrt( (del_npe/npe)**2 +
& del_sphe_sphe_2 )
else

del_i_phel = 99999.

31
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endif

if ( i_phel.ne.O. ) then

del_i_phel_cut_ev = del_i_phel * i_phel_cut_ev / i_phel
else

del_i_phel_cut_ev = 99999.
endif

integral over 1st photoelectron from PC + 1st dynode

i_pheldyn = i_phel
i_pheldyn_cut_ev = i_phel_cut_ev

fitpar2(3)
fitpar2(4)
fitpar2(5)
fitpar2(6)
do i=1,Thistch
if ( dofitflag(l).eq.1l .or. dofitflag(l).eq.11 ) then
i_pheldyn = i_pheldyn + photoel_dr(real(i))
elseif ( dofitflag(l).eq.2 .or. dofitflag(l).eq.12 ) then
i_pheldyn = i_pheldyn + phe_gauss_dr(real(i))
elseif ( dofitflag(l).eq.3 .or. dofitflag(l).eq.13 ) then
i_pheldyn = i_pheldyn + phe_poiss_dr(real(i))
elseif ( dofitflag(l).eq.4 .or. dofitflag(l).eq.14 ) then
i_pheldyn = i_pheldyn + phe_poiss_dyn_dr(real(i))
endif
enddo
do i=1,Ihistch
if ( i-1.ge.(ped+lossthresh(1)*sped) ) then
if ( dofitflag(l).eq.1l .or. dofitflag(l).eq.11 ) then
i_pheldyn_cut_ev = i_pheldyn_cut_ev + photoel_dr(real(i))
elseif ( dofitflag(l).eq.2 .or. dofitflag(l).eq.12 ) then
i_pheldyn_cut_ev = i_pheldyn_cut_ev + phe_gauss_dr(real(i))
elseif ( dofitflag(l).eq.3 .or. dofitflag(l).eq.13 ) then
i_pheldyn_cut_ev = i_pheldyn_cut_ev + phe_poiss_dr(real(i))
elseif ( dofitflag(l).eq.4 .or. dofitflag(l).eq.14 ) then
i_pheldyn_cut_ev = i_pheldyn_cut_ev + phe_poiss_dyn_dr(real(i))
endif
endif

0
0
1
1

enddo
integral over 1st photoelectron from PC + 1st dynode : error estimate (1,phe?,width)

if ( npe.ne.0. .and. phe.ne.0. ) then
del_i_pheldyn = norm * ( 1.0 - exp( -1.*dnpe ) ) *

& sqrt( (del_dnpe/dnpe)**2 + (del_dphe/dphe)**2 +
& (del_dsphe/dsphe) *x2 )
del_i_pheldyn = norm * ( 1.0 - exp( -1l.*dnpe ) ) *
& sqrt ( (del_dnpe/dnpe) **2 +
& (del_dsphe/dsphe) **2 )
else
del_i_pheldyn = 99999.
endif

if ( i_phel.ne.0. ) then
del_i_pheldyn_cut_ev = del_i_pheldyn *
& i_pheldyn_cut_ev / i_pheldyn
else
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&

&
&

&
&

&
&
&

&

del_i_pheldyn_cut_ev = 99999.
endif

loss calculation : intermediate parameters

loss_N = real(hits(1)) * (1. - exp( -1.*npe) )
del_loss_N = real(hits(1)) * exp( -1.*npe) * del_npe

loss_N_dyn = real(hits(1)) * (1. - exp( -1.*(npe+dnpe) ) )
del_loss_N_dyn = real(hits(1)) * exp( -1.*(npe+dnpe) ) *
sqrt ( del_npe**2 + del_dnpe**2 )

loss_P = n_ev_cut - i_ped
del_loss_P = sqrt( del_n_ev_cut**2 + del_i_ped**2 )

loss calculation : final parameters
if ( loss_N_dyn.ne.O. ) then

loss(1) = ( loss_N_dyn - n_cut_ev ) / loss_N_dyn
loss_sig(1) = sqrt(

(n_cut_ev*del_loss_N_dyn/loss_N_dyn**2)**2 +
(del_n_cut_ev/loss_N_dyn)**2 )
else
loss(1) = 1.0
loss_sig(1l) = 2.0
endif

if ( i_pheldyn.ne.0. ) then
loss(2) = ( i_pheldyn - i_pheldyn_cut_ev ) / i_pheldyn
loss_sig(2) = sqrt(

(i_pheldyn_cut_ev*del_i_pheldyn/i_pheldyn**2)*x2 +
(del_i_pheldyn_cut_ev/i_pheldyn)**2 )
else
loss(2) = 1.0
loss_sig(2) = 2.0
endif

if ( ( n_cut_ev+n_ev_cut-i_ped ).ne.0. ) then
loss(3) = (n_ev_cut - i_ped ) / ( n_cut_ev+n_ev_cut-i_ped )
loss_sig(3) = sqrt(

( 1xdel_n_ev_cut / (n_cut_ev+n_ev_cut-i_ped) )**2 +
( n_cut_evxdel_i_ped /
( n_cut_ev+n_ev_cut-i_ped )**2 )**2 )
else
loss(3) = 1.0
loss_sig(3) = 2.0
endif

if ( loss_N.ne.0. ) then
loss(4) = ( loss_N - n_cut_ev ) / loss_N
loss_sig(4) = sqrt( (n_cut_evxdel_loss_N/loss_N**2)**2 +

(del_n_cut_ev/loss_N)**2 )
else
loss(4) = 1.0
loss_sig(4) = 2.0
endif

if ( i_phel.ne.0. ) then
loss(5) = ( i_phel - i_phel _cut_ev ) / i_phel

33
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loss_sig(b) = sqrt( (i_phel_cut_evxdel_i_phel/i_phel**2)**2 +

& (del_i_phel_cut_ev/i_phel)**2 )
else
loss(5) = 1.0
loss_sig(b) = 2.0
endif

* protection still against .NAN. entries

if ( loss(1).1t.-9999 .or. loss(1).gt.9999 ) then
loss(1) = -9999.

endif

if ( loss(2).1t.-9999 .or. loss(2).gt.9999 ) then
loss(2) = -9999.

endif

if ( loss(3).1t.-9999 .or. loss(3).gt.9999 ) then
loss(3) = -9999.

endif

if ( loss(4).1t.-9999 .or. loss(4).gt.9999 ) then
loss(4) = -9999.

endif

if ( loss(5).1t.-9999 .or. loss(5).gt.9999 ) then
loss(5) = -9999.

endif

if ( loss_sig(1).1t.-9999 .or. loss_sig(1l).gt.9999 ) then
loss_sig(1) = -9999.

endif

if ( loss_sig(2).1t.-9999 .or. loss_sig(2).gt.9999 ) then
loss_sig(2) = -9999.

endif

if ( loss_sig(3).1t.-9999 .or. loss_sig(3).gt.9999 ) then
loss_sig(3) = -9999.

endif

if ( loss_sig(4).1t.-9999 .or. loss_sig(4).gt.9999 ) then
loss_sig(4) = -9999.

endif

if ( loss_sig(5).1t.-9999 .or. loss_sig(5).gt.9999 ) then
loss_sig(b) = -9999.

endif

write (6,%) ’>>> calcloss:’

write (6,*) ’fitpar(9),K1:’

write (6,*) norm,npe,ped,sped,phe,sphe

write (6,*) dnpe,dphe,dsphe,phe/dphe

write (6,*) del_norm,del_npe,del_ped,del_sped,del_phe,del_sphe
write (6,*) del_dnpe,del_dphe,del_dsphe

write (6,*) ’CUT = ped+lossthresh(1)*sped ) 27,

& ped+lossthresh(1) *sped

write (6,*) ’n_ev_cut,n_cut_ev,loss_N,loss_N_dyn,loss_P:’

write (6,%) ’N.... ’,n_ev_cut,n_cut_ev,loss_N,loss_N_dyn,loss_P
write (6,*) ’ERR > del_n_ev_cut,del_n_cut_ev,del_loss_N

& ,del_loss_N_dyn,del_loss_P

write (6,*) ’i_ped,i_phel,i_phel_cut_ev:’

write (6,%) ’INT: ’,i_ped,i_phel,i_phel_cut_ev

write (6,%*) ’ERR ’,del_i_ped,del_i_phel,del_i_phel_cut_ev

write (6,*) ’i_pheldyn,i_pheldyn_cut_ev:’

write (6,*) ’INT_DYN: ’,i_pheldyn,i_pheldyn_cut_ev

write (6,*) ’ERR ?,del_i_pheldyn,del_i_pheldyn_cut_ev
write (6,%) ’loss(1),loss(2),loss(3),loss(4),loss(5):’

write (6,%) ’L0SS: ’,loss(1),loss(2),loss(3),loss(4),loss(5)
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write (6,*) ’ERR : ’,loss_sig(1),loss_sig(2),loss_sig(3)
& ,loss_sig(4),loss_sig(b)
write (6,%) ’hits:’,hits

calcloss = 1.

END

Comments:

e structures like i-7 are due to the definition of the histogram hist! in Fortran where the channel with
0 ADC counts is stored in the histogram channel 1

e the calculation of the integrals calls almost exactly the same routine as it had been used for the fit
before (this is taken care of by choosing the same value for dofitflag(1) in the external call as for
the fit); the only difference of fit_function_dr.f wrt. fit_function.f is that the parameter vector par(9)
is handed over as PAW vector instead of in a Fortran COMMON block, and that fit_function_dr.f
only is looped over once

e the definition of the loss variables is discussed in the main text
e the calculation of the errors is discussed in the main text
e the calculation of corr and its error is discussed in the main text

e the protection against extreme numerical results seemed necessary for rate pathological cases
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