
Lecture 2, 20th September 2012

Electronic Methods, Semester 1

Digital Electronics 2: Sequential Logic

Sequential Logic (it cares about the past): Feedback & Memory
We are now moving on from very simple logic gates – where some “1”s and “0”s at the input
give either a “1” or a “0” at the output – to more complicated situations where time becomes
important. This will get us to a point where we can build motor controllers and memory
elements – both situations where time plays a crucial role. Logic where time plays an
important role is called sequential logic.

A cartoon of an arbitrary circuit using feedback:

Here the rectangles labelled 1 and 2 are supposed logic gates of some sort. The lines are wires
which connect the input to the gates and the gates to each other and to the output. Interesting
behaviour as a function of time emerges because the output is also one of the inputs. This is
called feedback and we are going to go through how this works.

As you can probably imagine, delays (due to the length of wires or the speed of response of a
logic gate) cause big problems in circuits that make use of feedback. This is overcome by
making use of a clock. The clock is a regular pulse which is attached to every logic gate, which
triggers it to re-evaluate its inputs and to update its output. (This is the processor speed that
you are used to hearing about for computers.)

Flip-Flops: (H&H, 8.16, p.504)
We are now going to look at a simple circuit with feedback built out of two NAND gates. This
circuit is called a basic Flip-Flop, a bi-stable unit, which works as a basic memory element.
The two inputs A and B go into two separate NAND gates – the two outputs X and Y are the
outputs of the two NAND gates. The feedback happens because each gate feeds into the second
input of the other gate. See the diagram below.

OK – a fairly simple circuit. You may notice that there is a symmetry plane along the midline,
i.e. that top and bottom halves of the circuit are identical. Now let’s take a look at how it
behaves.

α β Q
0 0 1
0 1 1
1 0 1
1 1 0

A

B

X

Y

Input A Input B

Output

Feedback

1 2

And remember: each
NAND gate has this
truth table

Lecture 2, 20th September 2012

Electronic Methods, Semester 1

Rule of thumb: if one of the inputs to a NAND gate is 0 then the output is 1.

Response to A,B=1,0 or A,B=0,1 is sensible.

The NAND gate with a 0 input has to have a 1 output.
Hence the other gate has a 1,1 input, resulting in a 0 output – stabilising the other state.

Response to A,B=1,1 is more difficult.

By symmetry you would think that both outputs must be identical. Wrong!
Changing from A≠B to A=B=1 preserves old X,Y. Memory! (The device history has
broken the symmetry)

The basic Flip-Flop Operation Table:
A B Xn+1 Yn+1
0 0 1 1
0 1 1 0
1 0 0 1
1 1 Xn Yn

The process of making the value of a memory element equal to 1 (here the X output) is called
setting. What do you need to input in order to “set” this memory element?

Likewise the process of making the value of a memory element 0 (here the X output) is called
resetting. What do you need to input in order to “reset” this memory element?

Flip Flopping ≡ Setting & Resetting

What happens if you first enter A,B=0,0 – you see the flip flop respond – and then you enter
A,B=1,1? Try it.
Both outputs of the flip flop regularly change states, they oscillate in time:

Xn+0, Yn+0 = 0, 0
Xn+1, Yn+1 = 1, 1
Xn+2, Yn+2 = 0, 0
Xn+3, Yn+3 = 1, 1
 :

and so on, until you break the cycle.
This sequence of inputs should be avoided.

You are now supposed to understand the most basic operation of a flip flop memory element.

Lecture 2, 20th September 2012

Electronic Methods, Semester 1

Design flaws of the basic Flip-Flop:
Although this basic flip flop unit provides a simple demonstration of memory the design is
ultimately a disaster. There are actually two layers problems. We will unpack each and solve
them in turn.

For the purpose of diagnosing the problems we label the two NAND gates “1” and “2”on the
diagram and use subscripts to specify time steps:

The first problem we are dealing with is associated with the lack of precise symmetry
between the two gates. Let’s take a flip flop with an example state X0, Y0 = 1, 0 and issue a
reset command at t0. In the ideal case the sequence of events should look like this:

time t-1 t0 t+1
A 1 1 1
B 1 0 1
X 1 1 0
Y 0 0 1

But what will happen in reality is that after setting B=0 at t0, due to finite signal propagation
and slew rate, it will take a little time to update Y (i.e. updating the output from X, Y = 1, 0 at
t0 to X, Y = 1, 1 at t+1). After a further while, at t+2, the signal Y will have propagated to the
input of gate 1, the output still showing X, Y = 1, 1. After another while the signal X will have
been evaluated and updated (i.e. updating the output from X, Y = 1, 1 at t+2 to X, Y = 0, 1 at t+3).
So, the sequence of events actually is:

time t-1 t0 t+1 t+2 t+3
A 1 1 1 1 1
B 1 0 0 0 0
X 1 1 1 1 0
Y 0 0 1 1 1

Disaster! At t+1 and t+2 the output is ill defined. Similar transients can occur if one gate
works a little faster than the other or the signals to the inputs arrive at slightly different
times at the flip flop.

The basic Flip-Flop is a failure because it relies on perfect symmetry between the components
and on instantaneous signal updates – both of which are practically impossible. It also relies on
the A and B input signals arriving at exactly the same moment – which is equally unrealistic.

A

B

X

Y

1

2

Colour key:
blue indicates updated
settings
red indicates updated
evaluations

Lecture 2, 20th September 2012

Electronic Methods, Semester 1

The flip flops have several problems:

• The system is sensitive to the details of the components.
• Some possible input combinations will cause the device to give oscillating outputs for

ever (X=Y=1 followed by A=B=1).
• The oscillation condition can be fulfilled just because the input signals arrive at

different times.

The first improvement is to exert some control over when inputs arrive with the NAND
gates. To do this we are going to add some gates to the input side of the flip flop which prevent
anything going to the flip flop unless an enable input is set to 1.

We want to control when the circuit accepts input, in order to control simultaneity and
introduce a clock which controls the data flow. A clock is a regular sequence of logic “1”s and
“0”s. The general from of a clock signal is pictured here:

This allows the flip flop to be periodically updated when it only responds to its inputs during
one half-cycle of the clock (“take input”) , and it is insensitive to the inputs during the other
half-cycle (“ignore”), like in this picture:

If properly used, this can prevent the system taking a new input signal while a previous input
is still being processed. During the “ignore” half-cycles the inputs can be updated, so that
these input signals are passed on simultaneously when the “take input” order comes.

Gated SR Flip-Flop: (H&H, 8.17, p.507)
Here you see the circuit for the extension of a standard flip flop to a gated SR Flip-Flop by the
use of an enable signal:

Time

take input take input ignore ign… …ore Enable
signal

S

R

Enable

Gated
SR Flip-Flop

Q

Q’

Lecture 2, 20th September 2012

Electronic Methods, Semester 1

As desired the system responds only when enable=1. Remember: if either of the inputs to a
NAND gate is zero then the output is 1. So when the enable=0 the system is entirely oblivious
to the value of the inputs S and R. Also note that only NAND gates are used in this circuit.
During the enable=1 being set the operation table can be determined. It looks like this:

S R Qn+1
0 0 Qn
0 1 0
1 0 1
1 1 XX

You will notice that the inputs have been labelled S and R corresponding to their “set” and
“reset” roles. The outputs are labelled Q and Q’ as they now are expected to be complements.

The S=R=0 input is the memory function i.e. this choice of input at the next enable=1
maintains the existing output value.
The S=R=1 condition must still be avoided so as not to create oscillations. Having input
combinations that must be avoided is a hazard to the integrity of the circuit. So further fixing
still will be needed.

We are now using the enable circuitry to control when the flip flop will accept input. This
circuit is called a transparent latch. The name points to another reason why this circuit is
still far from ideal. At any time while the enable=1 state is set any number of input changes
can pass through to the flip flop. This can lead to oscillating outputs in the same way as with
the simple circuit. Bummer!

So why bother with this, if the fix doesn’t work? Because it points the right way towards the
ultimate design of a memory element for which all four input combinations have a properly
defined function and where no transition problems occur.

Making the SR Flip-Flop better controlled is equivalent to making the “transparent latch”
opaque. We don’t want the flip flop to be open to changes in the input for any length of time.
The solution can be drawn like this:

So, we want a circuit that accepts input only at the precise moment when the clock is
changing, for example at the falling edge from 1 to 0, but not during the clock pulses. This will
ensure sufficient simultaneity.

indifferent indifferent indifferent ind… …ent

take the input only
at these edges

Enable
signal

Time

Lecture 2, 20th September 2012

Electronic Methods, Semester 1

To do this, in essence you need to combine two “transparent latches” – one that accepts input
when the clock is high and one which accepts input when the clock is low. So, combine two
circuits with opposite phase:

Below is a schematic illustration to make this clearer. Values at the input only make it half
way through the circuit initially. When the clock changes from 1 to 0 they are then passed to
the second half of the circuit:

The logic values that have reached here at the end of the clock pulse are the ones that are
processed at the falling edge of the clock as demanded above.

If such a circuit could be constructed then it would give the desired behaviour:

You are now supposed to understand the basic idea of how to make a memory element work
such that it doesn’t respond to changes in the input at the wrong moment.

Enable
signal

First

Second

Latch 1:
Responds

when
enable=1

Latch 2:
Responds

when
enable=0

S

R

enable

Q

Q’

take input here

Lecture 2, 20th September 2012

Electronic Methods, Semester 1

Opaque latch: JK Flip-Flop (H&H, 8.17, p507)
The circuit we need to build is not trivial – it goes by the name JK Flip-Flop. People rarely go
completely mad trying to understand how it works, usually just a little bit .

Are you disappointed that you recognise the elements already?
Yes, the basic structure is that of two SR Flip-Flops in sequence: one labelled Master and the
other labelled Slave, each using four NAND gates as introduced before. The output states of
the Master are called M and M’, those of the Slave are called Q and Q’, in line with previous
nomenclature. The inputs to the circuit are called J and K by convention.

 The enabling of the two SR Flip-Flops is controlled by a common clock signal, which gets
inverted using a NOT gate for the Slave to make it operate counter-phase with respect to the
Master. The dashed line indicates the point that the input signals reach while the clock pulse is
1. As the clock changes to 0 the signal is processed further by the slave.

The only new circuit design elements are the feedback lines from the output of the Slave to
the input of the Master. The lines cross-feed as for the basic flip flops. These additional lines
also require the triple-input NANDs, which you haven’t seen before. They follow the same
rule-of-thumb as their dual-input brothers: if any input is 0 the output is 1.

The new feedback connections from Q and Q’ to K and J ensure that the two outputs always
have opposite values, hence the naming convention Q and Q’, and that all four input
combinations can be used. In addition to the memory state and the set and reset functions you
know from the RS Flip-Flop, the input state of J=K=1 toggles the output at the next update, i.e.
it inverts the states of Q and Q’.
 This is very useful for counting applications. Here is the operations table of the JK Flip-Flop:

J K Qn+1
0 0 Qn
0 1 0
1 0 1
1 1 Qn’

Its characteristic equation is: Qn+1 = J.Qn’ + K’.Qn

J

K

Q

Q’

Clock

M

M’

Master Slave

Lecture 2, 20th September 2012

Electronic Methods, Semester 1

We now have a well behaved memory element for which all four inputs are used. In practice
the details of the JK Flip-Flop are not drawn every time the circuit is used. Instead it has its
own symbol:

The input for the clock signal that controls the circuit is labelled “CLK”.

J and K can be used to “set” and “reset” the circuit. But in a number of common applications
the two inputs J and K are attached together and fixed at a signal value (say 1). In order to still
be able to separately initialize the output values separate “set” and “reset” inputs are
provided. In the chips you use in the lab these input pins are labelled “preset” and “clear”.

You will explore the behaviour of the JK Flip-Flop further in the lab.

Summary

• Feedback makes memory possible, however, it also makes the circuit very sensitive to
small differences between apparently identical components.

• Using a clock to control the circuit keeps the behaviour sensible. It prevents important

sections of the circuit responding to changes in the input values at unhelpful moments.

• The clock effectively limits feedback

You now have gained a basic idea of how digital signal processing is controlled, e.g. in
computer CPUs or in serial data transmission.

Set

Reset

J

K

Q

Q’
CLK

