
16.1 Using conservation of angular momentum

One method of solving the scattering problem is to use the Born Approximation. This is a
perturbation method based on the Fermi Golden Rule and is therefore valid for short-ranged,
weak potentials. For the case of a central potential a more general method exists: Partial waves.

It is well known that a particle moving in a central potential experiences no torque (about the
potential origin), and therefore conserves angular momentum. In the quantum case angular mo-
mentum is quantised, so the scattering does not change the angular momentum quantum number
l. Partial waves proceeds by a ‘divide and conquer’ strategy of expanding the incident and scat-
tered fluxes in a basis set of distinct angular momentum. The angular parts of this basis are
unaffected by the scattering, thus we need consider only the 1D radial problem. Moreover, for a
conservative potential, the energy of the particles is unaffected, thus |k| = |k′|, so all that a central
potential can achieve is a change of phase.

Like the Born approximation, the derivation of the Partial Wave equation is complicated, but it
can be done for a general potential, so once we have the result we can just use it.
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Figure 15: Plane wave in, radial wave out. |Ψ〉 = eikz + f(θ)eikr/r

16.2 Digression: Expanding a plane wave in an angular momentum basis set

A preliminary step in partial wave analysis is to expand the incident plane wave in a set of partial
waves. The solution to the Schroedinger equation for a free particle in spherical polars can be
separated into three parts:

Incident free particle wavefunction = eiKz = eiKr cos θ = R(r)Θ(θ)Φ(φ)

Solving for Φ is trivial - there is no φ dependence of eiKr cos θ - so Φ(φ) = 1. Θ is also straightfor-
ward, since we have already solved the Schroedinger equation for hydrogen, and the potential has
the same θ dependence (i.e. none), so the Θ functions must be the Legendre polynomials Pl(cos θ)
which are orthogonal and normalised to 〈PlPk〉 = 2

2l+1
δkl. By analogy with hydrogen (though with

V=0), R(r) must now be a solution to the equation:

1

r2

d

dr
(r2dR

dr
)− l(l + 1)

r2
R +

2µ

h̄2 ER = 0

Because we are describing free particles, E > 0 and E is not quantised. Incoming beams of any
energy can be treated. The solutions to this equation are well known to mathematicians, and can
be found in most quantum mechanics books. They are the Spherical Bessel Functions: jl(Kr).
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Thus we can expand eiKr cos θ in spherical harmonics and spherical Bessel functions - a complete set
of orthonormal basis states which are eigenstates of the angular momentum: L̂2|jl(Kr)Pl(cos θ)〉 =
l(l + 1)h̄|jl(Kr)Pl(cos θ)〉. Of the complete set of spherical harmonics, we need only the Legendre
polynomials Pl(cos θ) = Yl0 because of the cylindrical symmetry (Φ(φ) = 1). We can write the
plane wave along z in this basis set, with coefficients an

exp(iKr cos θ) =
∞∑

n=0

anjn(Kr)Pn(cos θ)

whence, multiplying by Pl(cos θ) and integrating over θ to pick out a specific component:

〈Pl| exp(iKr cos θ)〉 =
∞∑

n=0

anjn(Kr)〈Pl|Pn〉 =
2

2l + 1
aljl

Integrating the left hand side by parts gives a term proportional to r−1 and a series of terms of
higher order r−n. Taking the limit as r →∞, where only the r−1 term is significant:

2

2l + 1
aljl =

1

iKr
[Pl(cos θ) exp(iKr cos θ)]cos θ=1

cos θ=−1 r →∞

This boundary condition is sufficient to determine the al.

Now, for Legendre polynomials Pl(cos θ = 1) = 1 and Pl(cos θ = −1) = (−1)l = eilπ so that:

2

2l + 1
aljl =

1

iKr
[eiKr − eilπ−iKr] r →∞

which after a bit of manipulation (use eilπ/2 = il) becomes:

aljl(Kr) = (2l + 1)il
sin(Kr − lπ/2)

Kr
r →∞

For the Kr dependence to be correct, we must have:

jl(Kr) =
sin(Kr − lπ/2)

Kr
r →∞

which can be confirmed by comparing the form of the Bessel function at r → ∞ with the plane
wave. Thus al = (2l + 1)il.

Finally, we can write:

exp(iKr cos θ) =
∞∑

l=0

iljl(Kr)(2l + 1)Pl(cos θ)

which is the representation of a plane wave as a linear combination of partial waves with distinct
angular momentum. This is the starting point for partial wave analysis. Because it is independent
of the scattering potential we do not need to repeat this expansion (or one like it) every time we
do a partial wave calculation: we just use the result.

Note the term (2l+1). This can be related to the classical ‘impact parameter’ mentioned above.

The angular momentum of a particle of velocity v is mvb =
√

l(l + 1)h̄. Thus a classical (large l)

particle with angular momentum lh̄ would pass between a ring of radius b = lh̄/mv and one of
radius b = (l + 1)h̄/mv. The area between these rings is (2l + 1)π(h̄/mv)2 so for a uniform beam
the probability of a particle having angular momentum l is proportional to (2l+1).
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16.3 Incident and Scattered Flux

If can write the solution to the Schroedinger equation |Ψ〉 at large r in the form of an incident
plane wave and a scattered radial wave:

|Ψ〉 = IncidentWave + ScatteredWave = exp iKz +
f(θ)

r
exp iKr

Then the incident flux is the product of the probability density and the particle velocity I =
veiKze−iKz = v = h̄k/m. Likewise the scattered flux must have a radial function which gives a
normalisable plane wave (e−iKr/r), and a θ dependence arising from the scattering, which we call
f(θ). By symmetry, there is no φ dependence. Thus the scattered flux per unit area will be:
vf ∗(θ)f(θ)/r2.

Thus dσ/dΩ = S(θ)/I = f ∗(θ)f(θ), and all we need do is calculate f(θ).

16.4 Solving the Schoedinger Equation - the Phase Shifts

In the previous section we solved this problem without the potential (i.e. f(θ) = 0), we now
solve it with the central potential. For a spherically symmetric potential, the angular part of the
Hamiltonian is the same as the previous section, because the potential is independent of φ and θ,
so the analysis is the same except the equation for R(Kr), which becomes:

d2ul(r)

dr2
− l(l + 1)

r2
ul(r) +

2µ

h̄2 [E − V (r)]ul(r) = 0

where we set ul(r) = rRl(r), the same substitution as in the atomic hydrogen problem.

If we look at the limit of large R(Kr → ∞), where the detector in any experiment would be
stationed, we find V (r → ∞) = 0 and so Rl(Kr → ∞) describes a free particle. The solution
must therefore tend to the same limit as jl(Kr →∞), though perhaps with different phase:

Rl(Kr) = sin(Kr − lπ/2 + δl)/Kr

This is always a solution at r →∞ provided that V (r) → 0 faster than 1/r (Localised potential).

Thus to perform partial wave analysis we need to solve the radial Schroedinger equation for Rl(Kr)
for each angular momentum component.

The wavefunction at long range describes a free particle with the same —K— as the incident
beam. The only possible effect of the conservative, central potential is to change the phase of
plane wave by δl. The limit of r →∞ for each solution can be expressed by a single number: the
phase shift δl.

16.5 Obtaining Cross sections

Recalling that to get cross sections we need to find f(θ), we express Ψ in the appropriate form at
R →∞.

Ψ = eiKz + f(θ)
eiKr

r
=

∞∑

l=0

iljl(Kr)(2l + 1)Pl(cos θ) + f(θ)
eiKr

r
=

∞∑

l=0

blRl(Kr)Pl(cos θ)

where bl are expansion coefficients for the expression of Ψ in the partial wave basis, the equivalent
of the al for the expression of a free particle in the partial wave basis.
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We already know the r → ∞ values for jl and Rl. Using the limiting values of jl(Kr → ∞),
writing the equation above in terms of complex exponentials and multiplying by 2iKr we find:

∞∑

l=0

il[ei(Kr−lπ/2)−e−i(Kr−lπ/2)](2l+1)Pl(cos θ)+2iKf(θ)eiKr =
∞∑

l=0

bl[e
i(Kr−lπ/2+δl)−e−i(Kr−lπ/2+δl)]Pl(cos θ)

Comparing the coefficients of the e−iKr term, we can solve for the expansion coefficients bl

(2l + 1)ileilπ/2 = ble
ilπ/2−iδl ; bl = (2l + 1)ileiδl

and now, using these values for bl we can compare the coefficients of the eiKr terms, and after a
little manipulation of complex exponentials, we find:

f(θ) = K−1
∞∑

l=0

(2l + 1)eiδl sin δlPl(cos θ)

From this we can calculate dσ/dΩ = |f(θ)|2 and σ = 2π
∫ |f(θ)|2dθ. Note that dσ/dΩ involves the

product of two series, and thus contains many cross terms. In general it is very complicated.

However, when integrated over all θ these cross terms vanish due to orthogonality of the Legendre
polynomials 〈Pl|Pl′〉 = 0 (l 6= l′). Thus the total cross section, expressed in partial waves, has a
particularly simple form:

σ =
4π

K2

∞∑

l=0

(2l + 1) sin2 δl

Hence the scattering cross sections are completely determined by |K| and the phase shifts δl. For
a given problem, all we must calculate are the δl, then we can simply apply the result above for σ.

Thus all the effect of the potential on a given partial wave in contained in a single number - the
phase shift. This is the amount by which can be imagined as the amount a given partial wave
is pulled in by the potential. The phase shifts must be obtained by solving the radial equation
for Rl(Kr) and comparing with jl(Kr) at large r for each l. Although the analysis done so far
is valid for all problems, for a specific problem, one must still evaluate the phase shifts and solve
the radial equation.

V=0
r

V=+Vo

V=0
r

Repulsive PotentialNo Potential 

Figure 16: Radial wavefunctions, ul(r) = rR(r) showing phase difference at r due to short-ranged
potential. The attractive potential pulls in the wave giving negative δl, while the repulsive potential
pushes out the wave for positive δl
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17 Using Partial Waves

17.1 Impact Parameter and Classical Analogies
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Figure 17: Relation between classical and quantum angular momentum

Knowing the impact parameter gives us some classical idea of whether a scattering event is likely.
If the impact parameter is larger than the range of the potential, then classically the particles
would miss. In the quantum case, we expect this to mean that the phase shift for that angular
momentum is zero, and hence that the contribution from that term in the expansion is zero.
Thus at a given incoming momentum, h̄k, we can determine how many terms in the partial wave
expansion to consider from h̄kbmax ≈ lmaxh̄, where bmax is the maximum impact parameter for
classical collision, i.e. the range of the potential.

17.2 S-wave scattering

Although exact at all energies, the partial wave method is most useful for dealing with scattering of
low energy particles. This is because for slow moving particles to have large angular momentum
(h̄kb) they must have large impact parameters b. Classically, particles with impact parameter
larger than the range of the potential miss the potential. Thus for scattering of slow-moving
particles we need only consider a few partial waves, all the others are unaffected by the potential
(δl ≈ 0). Thus partial waves and the Born approximation are complementary methods, good for
slow and fast particles respectively.

For very low energy we need consider only the first term in the partial wave expansion. This is
known as S-wave scattering. In this case it is possible to solve for the differential cross section, since
only the first term in the series for f(θ) is involved: Since the angular variation is P0(cos θ) = 1
the scattering is isotropic.

dσ

dθ
= |f(θ)|2 = k−2 sin2 δ0

At higher energies, other angular momentum components come into play. For a given l component,
scattering is maximised for δl = π/2.
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17.3 Resonance

In some cases where a potential has a bound state of particular angular momentum, the scattering
of particle with that angular momentum will be especially enhanced. In such cases the total
scattering cross section will show a peak, and the angular distribution will be characteristic of the
appropriate Pl(cos θ). This very strong scattering is known as resonance and is a powerful method
for studying bound states.

17.4 Example of S-wave scattering - Attractive square well potential

An example where we can solve for the phase shift is the 3D-square well potential:

(V (r < R) = −V0; V (r > R) = 0).

For the l = 0 case the radial equation with U0 = R0r is

d2u0(r)

dr2
+

2µ

h̄2 [E − V (r)]u0(r) = 0

The solutions to this are familiar from the 1D square well. If we write

K0 =
√

2µ[E + V0]/h̄; K =
√

2µE/h̄

then for r < R, u(r) = A sin K0r + B cos K0r.

and for r > R, u(r) = C sin Kr + D cos Kr. which can easily be written in a different form to
show the appropriate phase shift δ0: u(r) = F sin (Kr + δ0) where (C = F cos δ0 ; D = F sin δ0)

As with the 1D square well, the boundary conditions are that u and du
dr

are continuous at R, which
lead to:

K tan K0R = K0 tan(KR + δ0) or δ0 = tan−1
(

K

K0

tan K0R
)
−KR

In the low energy case KR ¿ 1, we obtain maximum scattering (sin2 δ0 → 1) when K0R =
(n+ 1

2
)π, when the scattering cross section is σ = 4π/K2. This is an example of s-wave resonance.

In the same slow particle limit K ¿ K0, and assuming that tan K0R is not very large: δ0 ≈ sin δ0.

σ ≈ 4πR2
(

tan K0R

K0R
− 1

)2

This correctly predicts that when tan K0R = K0R the scattering cross section will be zero.

There are a few features of the square-well which also apply in more general cases. Assuming K0

is basically a measure of the potential depth.

• For weak coupling K0R ¿ 1, δ0(K) → 0 as K → 0

• When K0R approaches π/2 the potential is almost able to bind an s-wave bound state. Now
the phase shift δ0(K) → π/2 and the cross section diverges like K−2 as K → 0. This is
known as zero energy resonance.

• If E is high enough that δl = (n + 1
2
)π for l 6= 0 the scattering cross section can become

especially high due to another angular momentum component - p-wave resonance for l = 1,
d-wave resonance for l = 2 etc. In these cases the eigenfunction becomes large near to the
potential. The potential is said to have virtual states at the resonance energies.
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• Levinson’s Theorem states that lim
k→0

δl(k) = nlπ

where nl is the number of bound states with angular momentum l.

• Whenever δ0(K) = nπ, for s-wave scattering, σ = 0. Thus for certain energies of the
incoming particle, the scattering is extremely small. This condition can only be consistent
with the condition for s-wave scattering (KR ¿ 1) if the potential is attractive (V0 < 0).

• δ0(K) tends to decrease with increasing K. This can be understood physically as the faster
particles having less time to interact and thus experiencing smaller phase shifts. As K →∞,
δl(K) → 0 because the potential is now weak relative to the particle energy. Of course
σ(K →∞) decreases even more quickly because of the K−2 term.

17.5 Partial Waves in the Classical Limit - Hard Spheres

Consider the scattering of a small hard sphere (radius xm, mass m) by a large hard sphere (XM ,
M). Firstly we transform the problem to the centre of mass reference frame where it becomes
that of a single effective particle of mass µ = mM/(m + M) moving in a hard sphere potential
(V (r < rH = XM + xm) = ∞). Thus the boundary condition is Rl(rH) = 0.

Consider the classical limit, where the sphere radius is much larger than the de Broglie wavelength,
krH À 1. Up to l = KrH the phase shift is enormous and sin δl could have any value. For
l > KrH the impact parameter is so large that the particles miss and δl = 0. Thus we can write
the scattering cross section:

σ =
4π

K2

l=KrH∑

l=0

(2l + 1)
1

2

where we replace sin2 δl with its average value of 1
2
.

Since KrH is large, we can replace the sum by an integral and take only the leading term;
(KrH)2 À KrH :

σ ≈ 2π

K2

∫ l=KrH

l=0
(2l + 1)dl ≈ 2πrH

2

This result should send us rushing back to look for the extra factor of 2, since the cross-section
of a sphere might be expected to be πrH

2. In fact, though, the analysis is correct and closer
analysis of the θ dependence of the wavefunction shows that half the amplitude is diffracted into
the classical ‘shadow’ of the sphere to cancel the amplitude of the unscattered wave there.

17.6 Ramsauer-Townsend effect

This is the name given to the fact that electrons with energy about 1eV can pass almost freely
through Xe, Kr, and Ar:- there is a sharp minimum in electron scattering cross-section for these
noble gases.

Due to polarisation of these atoms by the incoming electron the potential appears to increase as
K increases (more localised electrons are better able to polarise the atom). Thus δ0(k → 0) = nπ,
in accordance with Levinson’s theorem, and δ0 initially increases as k increases, before eventually
decreasing. Thus at a certain value of k, the phase shift is again δ0(k) = nπ, and the total scattering
cross section σT has an abrupt minimum. Although there are subsequent s-wave minima at e.g.
δ0(k) = (n − 1)π, these occur at sufficiently large values of k that s-wave scattering is no longer
dominant.
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Figure 18: Minimum in scattering cross section in Ar due to δ0 = 3π; No such effect in Ne due to
weaker polarisation.

By contrast, neon and helium have lower polarisability, due to fewer bound electrons. Thus the
phase shift δ0 decreases monotonically with k from nπ at k = 0 at there is no low-energy minimum.

Higher l phase shifts may increase with k because higher k implies smaller impact parameter
(classically, more chance of hitting the atom). The cross section increases more slowly due to the
additional K−2 dependence. The maximum in the Ar cross section at about 13eV is mainly due
to the d-wave δ2 = π/2.
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Figure 19: More localised electrons polarise atoms and thus increase the attractive potential
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