
14 Using Partial Waves

14.1 Impact Parameter and Classical Analogies
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Figure 14: Relation between classical and quantum angular momentum

Knowing the impact parameter gives us some classical idea of whether a scattering event is likely.
If the impact parameter is larger than the range of the potential, then classically the particles
would miss. In the quantum case, we expect this to mean that the phase shift for that angular
momentum is zero, and hence that the contribution from that term in the expansion is zero.
Thus at a given incoming momentum, h̄k, we can determine how many terms in the partial wave
expansion to consider from h̄kbmax ≈ lmaxh̄, where bmax is the maximum impact parameter for
classical collision, i.e. the range of the potential.

14.2 S-wave scattering

Although exact at all energies, the partial wave method is most useful for dealing with scattering of
low energy particles. This is because for slow moving particles to have large angular momentum
(h̄kb) they must have large impact parameters b. Classically, particles with impact parameter
larger than the range of the potential miss the potential. Thus for scattering of slow-moving
particles we need only consider a few partial waves, all the others are unaffected by the potential
(δl ≈ 0). Thus partial waves and the Born approximation are complementary methods, good for
slow and fast particles respectively.

For very low energy we need consider only the first term in the partial wave expansion. This is
known as S-wave scattering. In this case it is possible to solve for the differential cross section, since
only the first term in the series for f(θ) is involved: Since the angular variation is P0(cos θ) = 1
the scattering is isotropic.

dσ

dΩ
= |f(θ)|2 = k−2 sin2 δ0

At higher energies, other angular momentum components come into play. For a given l component,
scattering is maximised for δl = π/2.
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14.3 Resonance

In some cases where a potential has a bound state of particular angular momentum, the scattering
of particle with that angular momentum will be especially enhanced. In such cases the total
scattering cross section will show a peak, and the angular distribution will be characteristic of the
appropriate Pl(cos θ). This very strong scattering is known as resonance and is a powerful method
for studying bound states.

14.4 Example of S-wave scattering - Attractive square well potential

An example where we can solve for the phase shift is the 3D-square well potential:

(V (r < R) = −V0; V (r > R) = 0).

For the l = 0 case the radial equation with U0 = R0r is

d2u0(r)

dr2
+

2µ

h̄2 [E − V (r)]u0(r) = 0

The solutions to this are familiar from the 1D square well. If we write

K0 =
√

2µ[E + V0]/h̄; K =
√

2µE/h̄

then for r < R, u(r) = A sin K0r + B cos K0r.

and for r > R, u(r) = C sin Kr + D cos Kr. which can easily be written in a different form to
show the appropriate phase shift δ0: u(r) = F sin (Kr + δ0) where (C = F cos δ0 ; D = F sin δ0)

As with the 1D square well, the boundary conditions are that u and du
dr

are continuous at R, which
lead to:

K tan K0R = K0 tan(KR + δ0) or δ0 = tan−1
(

K

K0

tan K0R
)
−KR

In the low energy case KR ¿ 1, we obtain maximum scattering (sin2 δ0 → 1) when K0R =
(n+ 1

2
)π, when the scattering cross section is σ = 4π/K2. This is an example of s-wave resonance.

In the same slow particle limit K ¿ K0, and assuming that tan K0R is not very large: δ0 ≈ sin δ0.

σ ≈ 4πR2
(

tan K0R

K0R
− 1

)2

This correctly predicts that when tan K0R = K0R the scattering cross section will be zero.

There are a few features of the square-well which also apply in more general cases. Assuming K0

is basically a measure of the potential depth.

• For weak coupling K0R ¿ 1, δ0(K) → 0 as K → 0

• When K0R approaches π/2 the potential is almost able to bind an s-wave bound state. Now
the phase shift δ0(K) → π/2 and the cross section diverges like K−2 as K → 0. This is
known as zero energy resonance.

• If E is high enough that δl = (n + 1
2
)π for l 6= 0 the scattering cross section can become

especially high due to another angular momentum component - p-wave resonance for l = 1,
d-wave resonance for l = 2 etc. In these cases the eigenfunction becomes large near to the
potential. The potential is said to have virtual states at the resonance energies.
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• Levinson’s Theorem states that lim
k→0

δl(k) = nlπ

where nl is the number of bound states with angular momentum l.

• Whenever δ0(K) = nπ, for s-wave scattering, σ = 0. Thus for certain energies of the
incoming particle, the scattering is extremely small. This condition can only be consistent
with the condition for s-wave scattering (KR ¿ 1) if the potential is attractive (V0 < 0).

• δ0(K) tends to decrease with increasing K. This can be understood physically as the faster
particles having less time to interact and thus experiencing smaller phase shifts. As K →∞,
δl(K) → 0 because the potential is now weak relative to the particle energy. Of course
σ(K →∞) decreases even more quickly because of the K−2 term.

14.5 Partial Waves in the Classical Limit - Hard Spheres

Consider the scattering of a small hard sphere (radius xm, mass m) by a large hard sphere (XM ,
M). Firstly we transform the problem to the centre of mass reference frame where it becomes
that of a single effective particle of mass µ = mM/(m + M) moving in a hard sphere potential
(V (r < rH = XM + xm) = ∞). Thus the boundary condition is Rl(rH) = 0.

Consider the classical limit, where the sphere radius is much larger than the de Broglie wavelength,
krH À 1. Up to l = KrH the phase shift is enormous and sin δl could have any value. For
l > KrH the impact parameter is so large that the particles miss and δl = 0. Thus we can write
the scattering cross section:

σ =
4π

K2

l=KrH∑

l=0

(2l + 1)
1

2

where we replace sin2 δl with its average value of 1
2
.

Since KrH is large, we can replace the sum by an integral and take only the leading term;
(KrH)2 À KrH :

σ ≈ 2π

K2

∫ l=KrH

l=0
(2l + 1)dl ≈ 2πrH

2

This result should send us rushing back to look for the extra factor of 2, since the cross-section
of a sphere might be expected to be πrH

2. In fact, though, the analysis is correct and closer
analysis of the θ dependence of the wavefunction shows that half the amplitude is diffracted into
the classical ‘shadow’ of the sphere to cancel the amplitude of the unscattered wave there.

14.6 Ramsauer-Townsend effect

This is the name given to the fact that electrons with energy about 1eV can pass almost freely
through Xe, Kr, and Ar:- there is a sharp minimum in electron scattering cross-section for these
noble gases.

Due to polarisation of these atoms by the incoming electron the potential appears to increase as
K increases (more localised electrons are better able to polarise the atom). Thus δ0(k → 0) = nπ,
in accordance with Levinson’s theorem, and δ0 initially increases as k increases, before eventually
decreasing. Thus at a certain value of k, the phase shift is again δ0(k) = nπ, and the total scattering
cross section σT has an abrupt minimum. Although there are subsequent s-wave minima at e.g.
δ0(k) = (n − 1)π, these occur at sufficiently large values of k that s-wave scattering is no longer
dominant.
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Figure 15: Minimum in scattering cross section in Ar due to δ0 = 3π; No such effect in Ne due to
weaker polarisation.

By contrast, neon and helium have lower polarisability, due to fewer bound electrons. Thus the
phase shift δ0 decreases monotonically with k from nπ at k = 0 at there is no low-energy minimum.

Higher l phase shifts may increase with k because higher k implies smaller impact parameter
(classically, more chance of hitting the atom). The cross section increases more slowly due to the
additional K−2 dependence. The maximum in the Ar cross section at about 13eV is mainly due
to the d-wave δ2 = π/2.
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Figure 16: More-localised electrons polarise atoms and thus increase the attractive potential
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