
2 Review: Time-Independent Non-degenerate Perturbation Theory

There’s nothing new in this section, its simply an alternative derivation to the one you saw last
year in Junior Honours. If you prefered that derivation, feel free to read over those notes, the
results are the same!

2.1 Small changes to the Hamiltonian

There are very few problems in quantum mechanics which can be solved exactly. However, we
are often interested in the effect of a small change to a system, and in such cases we can proceed
by assuming that this causes only a small change in the eigenstates. Perturbation theory pro-
vides a method for finding approximate energy eigenvalues and eigenfunctions for a system whose
Hamiltonian is of the form

Ĥ = Ĥ0 + V̂

where Ĥ0 is the ‘main bit’ of the Hamiltonian of an exactly solvable system, for which we know
the eigenvalues, En, and eigenfunctions, |n〉, and V̂ is a small, time-independent perturbation. Ĥ,
Ĥ0 and V̂ are Hermitean operators. Using perturbation theory, we can get approximate solutions
for Ĥ using as basis functions eigenstates of the similar, exactly solvable system Ĥ0.

Assuming that Ĥ and Ĥ0 possess discrete, non-degenerate eigenvalues only, we write

Ĥ0 |ni〉 = Ei |ni〉

in Dirac notation. The states |ni〉 are orthonormal. WLOG, consider a state i = 0: the effect of
the perturbation will be to modify the state and its corresponding energy slightly; The eigenstate
|n0〉 will become |φ0〉 and E0 will shift to E0 + ∆E0, where

Ĥ |φ0〉 = E0 + ∆E0 |φ0〉

WLOG, expanding |φ0〉 in the basis set |ni〉 with coefficients ci0 and premultiplying by 〈n0|

〈n0|(Ĥ0 + V̂ )
∑

i=0,∞
ci0 |ni〉 = (E0 + ∆E0) 〈n0|

∑

i=0,∞
ci0 |ni〉

Which after a little algebra and cancellation yields the exact result:

∆E0 = 〈n0|V̂ |n0〉+
∑

i=1,∞
(ci0/c00)〈n0|V̂ |ni〉 (1)

Similarly, expanding |φ0〉 in the basis set |ni〉 and premultiplying by another state 〈nk|

〈nk|(Ĥ0 + V̂ )
∑

i=0,∞
ci0|ni〉 = (E0 + ∆E0) 〈nk|

∑

i=0,∞
ci0 |ni〉

leading to |φ0 〉 having a component of |nk〉

ck0(E0 + ∆E0 − Ek) =
∑

i=0,∞
ci0〈nk|V̂ |ni〉 (2)

Note that although we have denoted the unperturbed state as |n0〉, it is not necessarily the ground
state.
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2.2 First order energy shifts

In first order perturbation theory, we assume that the change in the wavefunction is small, i.e.
|ci0/c00| ¿ 1∀i and neglect the second term in equation 1 which becomes.

∆E0 ≈ 〈n0|V̂ |n0〉 ≡ V00

which is one of the most useful results in quantum mechanics . It tells us how to calculate the
change in the nth energy eigenvalue, to first order:

The shift in energy induced by a perturbation is given to first order by
the expectation value of the perturbation with respect to the unperturbed
state.

Thus first order time independent perturbation is equivalent to making the approximation that the
wavefunction does not change. Loosely, this works because the energy depends on the perturbation
to first order, but on wavefunction squared.

2.3 Mixing of the eigenstates of Ĥ0

Turning to equation 2, we make the approximation ci0 ¿ c00 ≈ 1 ∀i 6= 0 so that the only
significant term in the sum comes from i = 0, and also that ∆E0 is negligible compared to the
energy difference between states 0 and k:

ck0 ≈ 〈nk|V̂ |n0〉/(E0 − Ek) (3)

Using these coefficients, we see that the perturbation causes a first-order correction to the energy
eigenvector |n0〉:

|φ0〉 = |n0〉+
∑

k 6=0

〈nk|V̂ |n0〉
(E0 − Ek)

|nk〉 ≡ |n0〉+
∑

k 6=0

Vk0

(E0 − Ek)
|nk〉

Which defines the matrix element Vij for i = k, j = 0. We speak of the perturbation mixing the
unperturbed eigenfunctions since the effect is to add to the unperturbed eigenfunction, |n0〉, a
small amount of each of the other unperturbed eigenfunctions. The denominator suggests that
states with similar energies are more strongly mixed, and the “matrix element” determines how
the perturbation mixes the states.

Unlike the formula for the energy shift, we are faced in general with evaluating an infinite sum to
find the correction to the eigenfunctions.

2.4 Higher Orders

It may turn out that the matrix element V00 is zero, often due to symmetry. In this case we must
consider what happens at second order. Going back to equation 1, and using our expression for
mixing and assumption c00 ≈ 1

∆E0 = 0 +
∑

i=1,∞
〈ni|V̂ |n0〉 V0i

(E0 − Ei)
=

∑

i=1,∞

|Vi0|2
(E0 − Ei)
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2.5 Notes

• The results in 2.2 2.3 and 2.4 are worth memorising: physicists use them without proof.

• Energy shifts are real numbers, but matrix elements may be complex.

• If the perturbation operator commutes with the Hamiltonian, “Off-diagonal” matrix ele-
ments (Vij, i 6= j) are zero. Such perturbations change the energy, but not the wavefunction.

• If the perturbation is turned on and off again, the off-diagonal matrix elements determine
whether the quantum state is changed.

• To help with notation, we have derived results for perturbation to a state labelled by 0. This
is not necessarily the ground state - the above derivation is general.

• For the first-order changes to the eigenfunction to be small we must have:

〈nk|V̂ |n0〉 ≡ Vk0 ¿ |(E0 − Ek)| for all k 6= n

• Similarly, we require that the level shift be small compared to the level spacing in the
unperturbed system:

|∆E0| ¿ min |(E0 − Ek|

• These conditions may break down if there are degeneracies in the unperturbed system. How-
ever, we need only assume that the particular energy level whose shift we are calculating is
non-degenerate for the preceding analysis to be correct.

• The first order corrected wavefunctions are not fully normalised.

• The second order term always lowers the energy of the ground state.

2.6 Example

Consider a simple harmonic oscillator in its ground state, to which we apply a perturbation

V̂ = λx2. We know the unperturbed wavefunction |n0〉 = [mω0/πh̄]
1
4 exp{−mω0x

2/2h̄}, so we can
evaluate the first order shift in energy according to the perturbation theory:

∆E0 = 〈n0|λx2|n0〉 = λ
√

mω0/πh̄
∫

x2 exp{−mω0x
2/h̄}dx =

λ

2

h̄

mω0

In this case we know the exact shift, since the perturbation is simply an additional harmonic

potential, giving a total k = mω2
0 + 2λ and an exact ground state energy of 1

2
h̄

√
ω2

0 + 2λ/m. It is
easy to verify that to first order in λ these expressions are identical.

To determine the amount of mixing of states, we need to evaluate matrix elements like 〈n0|λx2|ni〉.
We won’t evaluate these here, but we will note that for odd i the integral is zero - the symmetric
perturbation only mixes in symmetric excited states.
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3 Dealing with Degeneracy

3.1 Time-Independent Degenerate Perturbation Theory

We have seen how we can find approximate solutions for a system whose Hamiltonian is of the
form

Ĥ = Ĥ0 + V̂

When we assumed that Ĥ and Ĥ0 possess discrete, non-degenerate eigenvalues only. This led to
a mixing of states where

|φ0〉 = |n0〉+
∑

k 6=0

Vk0

(E0 − Ek)
|nk〉

Clearly, if E0 = Ek this diverges. As do the higher order energy shifts (see 2.4). Thus for
the degenerate case we cannot associate a particular xperturbed state |φ0〉 with a particular
unperturbed state |n0〉: we need to take a different approach. In fact, the approximation we make
is completely different: we assume that the small perturbation only mixes those states which are
degenerate. We then solve the problem exactly for that subset of states.

Assume that Ĥ0 possesses N degenerate eigenstates |m〉 with eigenvalue Edeg. It may also pos-
sesses non-degenerate eigenstates, which can be treated separately by non-degenerate perturbation
theory. We write a perturbed eigenstate |φj〉 as an linear expansion in the unperturbed degenerate
eigenstates only:

|φj〉 =
∑

i

|mi〉〈mi|φj〉 =
∑

i

cji |mi〉

Where i here runs over degenerate states only. The TISE now becomes:

[Ĥ0 + V̂ ] |φj〉 = [Ĥ0 + V̂ ]
∑

i

cni |mi〉 = Ej

∑

i

cni |mi〉

but we know that for all degenerate eigenstates Ĥ0|mi〉 = Edeg |mi〉. So we obtain:

∑

i

cji V̂ |mi〉 = (Ej − Edeg)
∑

i

cji |mi〉

premultiplying by some unperturbed state 〈mk| gives

∑

i

cji

[
〈mk|V̂ |mi〉 − δik(Ej − Edeg)

]
= 0

We can get a similar equation from each unperturbed state |mk〉. We thus have an eigenvalue
problem: the eigenvector has elements cji and the eigenvalues are ∆Ej = Ej − Edeg. Writing the

matrix elements between the ith and kth unperturbed degenerate states as Vik ≡ 〈mi|V̂ |mk〉 we
recover the determinantal equation:

∣∣∣∣∣∣∣∣∣

V11 −∆Ej V12 ... V1N

V21 V22 −∆Ej ... V2N

... ... ... ...
VN1 VN2 ... VNN −∆Ej

∣∣∣∣∣∣∣∣∣
= 0

The N eigenvalues obtained by solving this equation give the shifts in energy due to the pertur-
bation, and the eigenvectors give the perturbed states |φ〉 in the unperturbed, degenerate basis
set |m〉.
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