
3 Dealing with Degeneracy

3.1 Time-Independent Degenerate Perturbation Theory

We have seen how we can find approximate solutions for a system whose Hamiltonian is of the
form

Ĥ = Ĥ0 + V̂

When we assumed that Ĥ and Ĥ0 possess discrete, non-degenerate eigenvalues only. This led to
a mixing of states where

|φ0〉 = |n0〉+
∑

k 6=0

Vk0

(E0 − Ek)
|nk〉

Clearly, if E0 = Ek this diverges. As do the higher order energy shifts (see 2.4). Thus for the
degenerate case we cannot associate a particular perturbed state |φ0〉 with a particular unperturbed
state |n0〉: we need to take a different approach. In fact, the approximation we make is completely
different: we assume that the small perturbation only mixes those states which are degenerate.
We then solve the problem exactly for that subset of states.

Assume that Ĥ0 possesses N degenerate eigenstates |m〉 with eigenvalue Edeg. It may also pos-
sesses non-degenerate eigenstates, which can be treated separately by non-degenerate perturbation
theory. We write a perturbed eigenstate |φj〉 as an linear expansion in the unperturbed degenerate
eigenstates only:

|φj〉 =
∑

i

|mi〉〈mi|φj〉 =
∑

i

cji |mi〉

Where i here runs over degenerate states only. The TISE now becomes:

[Ĥ0 + V̂ ] |φj〉 = [Ĥ0 + V̂ ]
∑

i

cji |mi〉 = Ej

∑

i

cji |mi〉

but we know that for all degenerate eigenstates Ĥ0|mi〉 = Edeg |mi〉. So we obtain:

∑

i

cji V̂ |mi〉 = (Ej − Edeg)
∑

i

cji |mi〉

premultiplying by some unperturbed state 〈mk| gives

∑

i

cji

[
〈mk|V̂ |mi〉 − δik(Ej − Edeg)

]
= 0

We can get a similar equation from each unperturbed state |mk〉. We thus have an eigenvalue
problem: the eigenvector has elements cji and the eigenvalues are ∆Ej = Ej − Edeg. Writing the

matrix elements between the ith and kth unperturbed degenerate states as Vik ≡ 〈mi|V̂ |mk〉 we
recover the determinantal equation:

∣∣∣∣∣∣∣∣∣

V11 −∆Ej V12 ... V1N

V21 V22 −∆Ej ... V2N

... ... ... ...
VN1 VN2 ... VNN −∆Ej

∣∣∣∣∣∣∣∣∣
= 0

The N eigenvalues obtained by solving this equation give the shifts in energy due to the pertur-
bation, and the eigenvectors give the perturbed states |φ〉 in the unperturbed, degenerate basis
set |m〉.
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3.2 Notes

• The perturbed eigenstates of Ĥ are linear combinations of degenerate eigenstates of Ĥ0.
This means that they too are eigenstates of Ĥ0 from a different eigenbasis.

• If Ĥ0 is compatible with V̂ , i.e. [Ĥ0, V̂ ] = 0, then there is no mixing with non-degenerate
states and the analysis above is exact.

• Notice how the mathematics mimics the quantum mechanics. Without the perturbation
the eigenbasis of Ĥ0 is not unique. When we try to determine its energy shift we find a
matrix equation which can only be solved for specific values of ∆Ej. These ∆Ej in turn
correspond to specific choices for the coefficients cji, i.e. particular linear combinations of the
unperturbed states. Thus to solve the equations we are forced to collapse the wavefunction
onto an eigenstate of V̂ . Vki is a Hermitian matrix, and consequently has real eigenvalues.

3.3 Example of degenerate perturbation theory: Stark Effect in Hydrogen

The change in energy levels in an atom due to an external electric field is known as the Stark
effect. The perturbing potential is thus V̂ = eEz = eEr cos θ. Ignoring spin, we examine this
effect on the fourfold degenerate n=2 levels. We will label these by their appropriate quantum
number: |l,m〉.

u00 = (8πa3
0)
−1/2(1− r/2a0)e

−r/2a0 ; u10 = (8πa3
0)
−1/2(r/2a0) cos θe−r/2a0

u11 = (πa3
0)
−1/2(r/8a0) sin θeiφe−r/2a0 u1−1 = (πa3

0)
−1/2(r/8a0) sin θe−iφe−r/2a0

From the analysis above, we need to calculate the matrix elements.

Vlm,l′m′ = 〈l, m|eEz|l′,m′〉 = eE
∫ ∫ ∫

u∗lm(r cos θ)ul′m′r2 sin θdθdφdr

It turns out that many of these are zero, since if any of the integrals are zero their product will
be. Looking first at parity, it is clear that eEz has odd parity (eE(r) cos(π − θ) = −eEr cos θ),
u00 has even parity and u1m have odd parity. Since the integral over all space of any odd function
is zero, V00,00 = V1m,1m′ = 0. Secondly,

∫ 2π
0 e±iφdφ = 0, so V00,11 = V00,1−1 = V11,00 = V1−1,00 = 0.

Since the perturbation is real, V00,10 = V10,00 and the only remaining non-zero matrix element is:

〈00|eEr cos θ|10〉 = (8πa3
0)
−1

∫ 2π

0
dφ

∫ π

0
cos2 θ sin θdθ

∫ ∞

0
(1− r/2a0)e

−r/a0r4/2a0dr = −3eEa0

This is best solved as a matrix problem, the determinantal equation is then:

∣∣∣∣∣∣∣∣∣

−∆E −3eEa0 0 0
−3eEa0 −∆E 0 0

0 0 −∆E 0
0 0 0 −∆E

∣∣∣∣∣∣∣∣∣
= (∆E)4 − (∆E)2(3eEa0)

2 = 0

The solutions to this are ∆E = ±3eEa0, 0, 0. The degeneracy of the states u11 and u1−1 is not
lifted, but the new non-degenerate eigenstates corresponding to ∆En = ±3eEa0 are mixtures,
(u00 ∓ u10)/

√
2. Consequently, the spectral line corresponding to the n = 2 → n = 1 Lyman-α

transition is split into three if the hydrogen atom is in an electric field.

A curious aspect of these eigenstates is that they are not eigenstates of L2, although they are
eigenstates of Lz. Nor do they have definite parity. In an electric field, therefore, the total angular
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momentum is not a good quantum number. Note that this effect is specific to hydrogen, since in
other elements the s and p levels are not degenerate.

Experimental results confirm this theory beautifully - the splitting of levels in hydrogen varies
linearly with the applied field strength, while in all other atoms it varies quadratically: the first
order perturbation is zero.

Looking at the electrostatics: the energy of a spherically symmetric charge density in a uniform
field is clearly independent of orientation. To have any orientation dependence the object must
have a dipole moment. The combination of 2s and 2p wavefunctions achieves this.

3.4 Symmetry and Degeneracy

In real systems degeneracy almost always related to symmetry. In general if the probability density
has lower symmetry than the Hamiltonian, the wavefunction will be degenerate.

There is a clear physical reason behind this. Consider the 2px orbital in hydrogen: it has a lobe
along the x-axis. However, there is no measurable quantity which defines an x-axis - the coordinate
system is just introduced by physicists to help solve the equations. The lobe could just as well
point in the y or z or (27, 43.2,−12) direction. Thus the px orbital has lower symmetry than the
Hamiltonian (spherically symmetric potential), and is degenerate with py and pz. Likewise the
spin: we talk about ‘spin up’, but there is no way to define ‘up’ from the Hamiltonian. Thus there
is degeneracy between spin states ‘up’ and ‘down’.

If we reduce the symmetry of the Hamiltonian, we now ‘lift’ the degeneracy. (i.e. the levels no
longer have the same energy). For example, an applied magnetic field defines an axis and lowers
the symmetry of the Hamiltonian. If the field is weak, we can use perturbation theory and assume
we still have p orbitals (Zeeman effect). Now, the orbitals must be eigenstates not only of Ĥ0,
but also of µ.B where µ is the magnetic dipole moment. The degenerate energy level splits into
several different energy levels, depending on the relative orientation of the moment and the field:
The degeneracy is lifted by the reduction in symmetry.

3.5 Time-variation of expectation values: Degeneracy and constants of motion

The time variation of the expectation value of an operator Â which commutes with the Hamiltonian
is:

d

dt
〈Φ|Â|Φ〉 =

∫
d3r

dΦ∗

dt
ÂΦ + Φ∗Â

dΦ

dt

but since ih̄
dΦ

dt
= ĤΦ and −ih̄

dΦ∗

dt
= Ĥ∗Φ∗

−ih̄
d

dt
〈Φ|Â|Φ〉 =

∫
(Ĥ∗Φ∗ÂΦ− Φ∗ÂĤΦ)d3r = 〈Φ|[Ĥ, Â]|Φ〉

Where we also use the fact that Ĥ is Hermitian. Thus if Ĥ commutes with Â ([Ĥ, Â] = 0), the
expectation value of A is independent of time. It is a conserved quantity.

As we have seen above, if we have degenerate eigenstates of the Hamiltonian, Ĥ, then there must
be some other operator Â which commutes with the Hamiltonian for which there are energy-
degenerate eigenstates with different eigenvalues A. These eigenvalues, A, are then constants of
the motion. Moreover, if Φ is an eigenfunction of Ĥ, then ÂΦ is also an eigenfunction of Ĥ.

Ĥ(ÂΦ) = ÂĤΦ = Â(EΦ) = E(ÂΦ)

There is a three way link between symmetry, degeneracy and conserved quantities.
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Figure 1: Any linear combination of two degenerate eigenstates produces another eigenstate.

3.6 Wavefunction Collapse onto degenerate levels

Refer back to the postulates of quantum mechanics: We know that acting with an operator Â on
an eigenstate |αn〉 of that operator gives us an eigenvalue An, which corresponds to a measurable
quantity.

There is no guarantee that |αn〉 is the only eigenstate of Â which has this eigenvalue (e.g. energy
levels in hydrogen). Different states with the same eigenvalue are referred to as degenerate.

Assume we find two orthogonal, degenerate eigenstates of Â: |α1〉 and |α2〉. i.e. Â|α1〉 = A1|α1〉
and Â|α2〉 = A1|α2〉. We also see that

Â (cos θ|α1〉+ sin θ|α2〉) = A1 (cos θ|α1〉+ sin θ|α2〉)

for any θ. We use cos θ for the expansion instead of the normal ci to emphasise the similarity
between eigenstates and vectors. It also allows for easy normalisation since cos2 θ + sin2 θ = 1.

Thus any linear combination of degenerate eigenstates produces another eigenstate. There is still
only twofold degeneracy, because there are only two orthogonal states, (sin θ|α1〉−cos θ|α2〉) being
the other one. The complete set of orthonormal eigenstates for Â is thus not a unique quantity,
since we can choose any θ to generate a pair of degenerate eigenstates.

A consequence of this is that when a measurement is made of Â which finds A1, there is not a
complete collapse of the wavefunction.

Consider measuring observable A in a system in a general state |Φ〉. By expanding |Φ〉 in the
eigenstates of Â: |Φ〉 =

∑
i ci|αi〉 we find the probability that the measurement will yield result

A1 is

|〈α1|Φ〉|2 + |〈α2|Φ〉|2 ≡ |c1|2 + |c2|2

The measurement has determined that we are either in state α1 or α2, but not which. Thus there
is a partial collapse of the wavefunction onto a linear combination of them:

(cos θ|α1〉+ sin θ|α2〉); cos θ =
c1√

|c1|2 + |c2|2

which is itself an eigenvector of Â.

Thus, in the case of degenerate final states, the final wavefunction after the measurement does
depend on the initial wavefunction. The generalisation of this to the case of many degenerate
states is straightforward.
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