4 Degeneracy, Symmetry and Conservation Laws
4.1 Distinguishing between eigenstates, Quantum numbers as labels

How can we distinguish between quantum states |a,,) which have degenerate values of A? The
obvious way is to measure the quantised observables and use them to label the state. We must be
sure not to make measurements which change the state. Thus all measurements should correspond
to commuting operators (Compatible observations: see QP3). In the non-degenerate case mea-
suring energy is sufficient, but in hydrogen, for example, we used quantum numbers n (for energy,
operator H ), I (for total angular momentum, LQ) and m; (one component of angular momentum,
L,).

Continuing the example of twofold degeneracy (3. 6) suppose that some operator Bis compatible
with A. This means that [A, B] = 0 and A and B have a common eigenbasis. i.e. some 6 and
0 + 7 /2 give cigenstates of both A and B in the form |a(6)) = (cos|ay) + sin 0]as)).

To find the appropriate value of 6, we have a similar problem to that encountered in 3.1 and must

solve for the eigenvectors of: ) )
( (aa|Blay) (a1|Blas) )
(az|Blar) (o] Blas)

The eigenvalues of this equation are the quantised measurable values of B. If both of these are
equal, there must be another measurable C which will distinguish the two states.

The generalisation to many degenerate levels is straightforward. If there are n orthogonal degener-
ate eigenstates of 121, (therefore an n-dimensional space in which every unit vector is an eigenstate
of 121), compatibility of eigenbases means there are at least n eigenstates of B. It is now possi-
ble that all these have different B eigenvalues, or that at least two have the same eigenvalue, in
which case if we want a specific set of orthogonal eigenstates, we must look for another compatible
operator C.

When the set of operators is sufficiently large that there is a unique set of eigenvalues for each
eigenstate, we call it a complete commuting set of operators. An example is ﬁ I:Q S, and L, in
hydrogen. The complete commuting set is not unique for a given Hamiltonian, for hydrogen we
could have used H, L2, S, and L, or H, L2, J and L, If one of the quantum numbers can be
written in terms of the others then it is redundant. If two of the quantum numbers come from
non-commuting operators, then the set does not define a state since the full set of measurements
could not be performed without changing the wavefunction.

4.2 Example

Consider the 2D harmonic oscillator V = mw 2(z? +y?). If we measure the energy and find it to
be 2hw, then the state could be |n, =1 ny =0) or |n, = 0,n, = 1) or any linear combination.
To fully define any state we require any two quantum numbers: n,, n, and £ = (n, +n, + 1)hw.

Suppose we measure the energy and find 3hw: there is a partial collapse of the wavefunction and
there are three degenerate possibilities. Suppose we then apply a perturbation AV = A\z? (see
2.6). This breaks the symmetry and collapses the wavefunction onto either |1,1) |2,0) or |0,2).
The perturbation matrix (see 3.1) (n,,n,|/AV|n,, n,) is diagonal provided we choose the basis
with z along the direction of the perturbation, and it has eigenvalues (n, + %))\h /mw. If we then
measure the energy and find F = 3hw + A /2mw then we know that the state is |0, 2): a complete
collapse onto a single wavefunction.

Aside: Consider mixing with the non-degenerate states. By symmetry (1,0/Az?2,0) = 0: the
perturbation does not mix n, = 0 and n, = 1 states, nor does it affect n, (see 2.3). Thus applying
the perturbation may induce a transition from |0,2) to |2,2), |4,2) etc. but not to n, = odd or
n, # 2. This gives rise to selection rules



4.3 Translational Symmetry and Conservation of Momentum

Consider a transformation operator in 1 dimension D which acts on the coordinates of a system as
a displacement D[f(x)] = f(z+1). The eigenfunctions of D satisfy D|¢(z)) = d|¢(z)) = |p(z+1)).
The general solutions to this equation are ¢(x) = e**u(z) where u(x) satisfies u(z) = u(x +1)
and k is complex.

This kind of translational symmetry exists when we have a crystal structure. Now consider a 1D
closed loop of N atoms: Uniqueness of the wavefunction requires that ¢(z) = ¢(z + NI) = e** =
e (@+ND - Thus possible wavefunctions must have real k& and the form

P(x) = e>™i/Nly (1) k =2mn/NI

The momentum of this state is given by:

_h/¢ /¢ lQﬂ‘m u’(a:)]gb(x)dx

The RHS first term gives is the familiar Ak, which we associate with the momentum. If u(x)
has some definite parity, then «'(z) will have opposite parity and the second term will be the
integral of an odd function (i.e. zero by symmetry). Thus & is a quantum number associated with
translational symmetry, which in turn has an operator D which commutes with the Hamiltonian
and is thus a constant of the motion. Translational symmetry is associated with conservation of
momentum.

For which the TISE, with the atom described by a potential V(z), and a particular value of k,
can be written

since the phase has been eliminated, we simply have a particle in a fixed volume uy(x) = uy(z+1)),
which means a series of discrete energy levels (bands). Thus all states can be labelled by k& and a
band index n.

We can write the semiclassical group velocity of the wavefunction as

dw 1dFE
v, = — = ———
7 dk  hdk
using £ = hw. A formal proof using the velocity operator gives the same result for the velocity.

Assuming that E does vary with k, this means we have a time-independent state which nevertheless
has a permanent, non-zero velocity through the lattice.

4.4 Application - electron in a crystalline solid

The above is the 1D statement of Bloch’s Theorem, the basis of study of electrons in solids. If we
imagine applying an electric field (€) in the x-direction, then the rate at which work is done is:

< dE  dE dk
—efv, = —=——
oAt dk dt

Using the expression for v, we find that the rate of change of ik is proportional to the external
force, rather like Newton’s second law.

dk

_ F—pr
e€ = 0



If we now consider acceleration:

dvy _ dvgdk 1 &°E
dt — dk dt  h® dk?

a =

we find a quantity h?/ % which is known as the effective mass, relating external force to acceler-

ation in a solid, and allowing us to avoid further consideration of the effect of the lattice.

4.5 The Kronig-Penney Model
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Figure 2: The Kronig-Penney potential and a Bloch function

In 4.1 u(z) is still completely general. The Kronig-Penney model considers a periodically repeating
square potential defined in one cell by V(z) =0(0 <z < b); V(z) = Vp (b < z <), then we can
solve for u(z) in one cell. Like the finite square well, this is a tedious boundary condition problem
where matching value and slope of the wavefunction at the potential edge gives a 4x4 matrix to
diagonalise. The details are given in wikipedia(!) and lead to an equation the LHS of which is

) k? + k2
drawn below: cos k1b cos ky(l — b) — él:_k 2 sin kyb sin ko (I — b) = cos ki
12

where ky = vV2mE /h and ky = /2m(E — Vp)/h, the appropriate free particle wavevectors, thus
for £ < Vj, ks is imaginary. As the figure shows, multiple solutions are possible for all k, giving
certain “bands” of energy, but not others.
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Figure 3: Graph of function arising from multiple square-well problem: Allowed energy solutions
exist only where | cos kl| < 1.



The key point about this equation is that it cannot be solved for certain values of F, around
kib = mm. A plot of the left hand side of the equation against F/V; illustrates this, solutions
for some value of k£ can be found only in the shaded regions of E. Moreover each shaded region
contains N allowed k& = 27n/NI[ values. Thus if each atom contributes two electrons the lower
‘valence’ band will be filled (one of each spin in each state) and the upper ‘conduction’ band will
be empty. To get an electron to move (change to a different k-state) requires a lot of energy, so
this represents an insulator.

In the limit of Vi = 0, we get k = ky = ko = vV2mE/h, the free electron result, while for very large
Vo >> E solutions are possible only for values of E which satisfy sin(k1b) =~ 0, i.e. the square
well.

The wavefunction is a complex exponential of kyx or kex, depending on whether it is in a well
or not. It is not and eigenfunction of the momentum operator. Thus although Ak looks like a
momentum, it isn’t the eigenvalue of the momentum operator. It is called “crystal momentum”
and along with the “effective mass” gives a pair of quantities with which we can apply Newtonian
dynamics thinking to a crystal, ignoring the effects of the lattice.

In three dimensions, the topology of the bands becomes much more complicated: this is a topic
for solid state physics.

4.6 Radioactive decay and imaginary potentials

If the number of particles in a given state is reduced in time, then the total intensity of that state
is reduced. Consider a particle moving in a region of imaginary potential V' (r) = —iV4y. The

TDSE is:
0 ,
Zhalq), t> = [HO — Z%”q),t)

Assume that the time independent part of the state is an combination of eigenstates of the real
part of the Hamiltonian:

|D,t) = ch(t) exp(—iE,t/h) |dn); where Ho|opn) = En|én)

Following the same analysis as for TDSE, premultiplying by (m/|, and for constant Vi, Vi = 9mn Vo
we obtain:

i ==iVaen = lealdl = e (0

Thus the probability amplitude of the state decreases in time. An imaginary potential can be
used to represent destruction of particles, either by absorption (in a scattering process, perhaps)
or by radioactive decay. Obviously the ket is not a full description of the system, since that should
include information about the decay products. The lifetime of the state is 7 = h/2V}.

Notice that —iV{ is not a Hermitian operator, and so it is not possible to perform a single mea-
surement of half life.



