
4 Degeneracy, Symmetry and Conservation Laws

4.1 Distinguishing between eigenstates, Quantum numbers as labels

How can we distinguish between quantum states |αn〉 which have degenerate values of A? The
obvious way is to measure the quantised observables and use them to label the state. We must be
sure not to make measurements which change the state. Thus all measurements should correspond
to commuting operators (Compatible observations: see QP3). In the non-degenerate case mea-
suring energy is sufficient, but in hydrogen, for example, we used quantum numbers n (for energy,
operator Ĥ), l (for total angular momentum, L̂2) and ml (one component of angular momentum,
L̂z).

Continuing the example of twofold degeneracy (3.6), suppose that some operator B̂ is compatible
with Â. This means that [A,B] = 0 and Â and B̂ have a common eigenbasis. i.e. some θ and
θ + π/2 give eigenstates of both Â and B̂ in the form |α(θ)〉 = (cos θ|α1〉+ sin θ|α2〉).
To find the appropriate value of θ, we have a similar problem to that encountered in 3.1 and must
solve for the eigenvectors of: (

〈α1|B̂|α1〉 〈α1|B̂|α2〉
〈α2|B̂|α1〉 〈α2|B̂|α2〉

)

The eigenvalues of this equation are the quantised measurable values of B̂. If both of these are
equal, there must be another measurable C which will distinguish the two states.

The generalisation to many degenerate levels is straightforward. If there are n orthogonal degener-
ate eigenstates of Â, (therefore an n-dimensional space in which every unit vector is an eigenstate
of Â), compatibility of eigenbases means there are at least n eigenstates of B̂. It is now possi-
ble that all these have different B eigenvalues, or that at least two have the same eigenvalue, in
which case if we want a specific set of orthogonal eigenstates, we must look for another compatible
operator Ĉ.

When the set of operators is sufficiently large that there is a unique set of eigenvalues for each
eigenstate, we call it a complete commuting set of operators. An example is Ĥ, L̂2, Ŝz and L̂z in
hydrogen. The complete commuting set is not unique for a given Hamiltonian, for hydrogen we
could have used Ĥ, L̂2, Ŝx and L̂x or Ĥ, L̂2, Ĵ and L̂z If one of the quantum numbers can be
written in terms of the others then it is redundant. If two of the quantum numbers come from
non-commuting operators, then the set does not define a state since the full set of measurements
could not be performed without changing the wavefunction.

4.2 Example

Consider the 2D harmonic oscillator V0 = 1
2
mω2(x2 + y2). If we measure the energy and find it to

be 2h̄ω, then the state could be |nx = 1, ny = 0〉 or |nx = 0, ny = 1〉 or any linear combination.
To fully define any state we require any two quantum numbers: nx, ny and E = (nx + ny + 1)h̄ω.

Suppose we measure the energy and find 3h̄ω: there is a partial collapse of the wavefunction and
there are three degenerate possibilities. Suppose we then apply a perturbation ∆V = λx2 (see
2.6). This breaks the symmetry and collapses the wavefunction onto either |1, 1〉 |2, 0〉 or |0, 2〉.
The perturbation matrix (see 3.1) 〈nx, ny|∆V |nx, ny〉 is diagonal provided we choose the basis
with x along the direction of the perturbation, and it has eigenvalues (nx + 1

2
)λh̄/mω. If we then

measure the energy and find E = 3h̄ω +λh̄/2mω then we know that the state is |0, 2〉: a complete
collapse onto a single wavefunction.

Aside: Consider mixing with the non-degenerate states. By symmetry 〈1, 0|λx2|2, 0〉 = 0: the
perturbation does not mix nx = 0 and nx = 1 states, nor does it affect ny (see 2.3). Thus applying
the perturbation may induce a transition from |0, 2〉 to |2, 2〉, |4, 2〉 etc. but not to nx = odd or
ny 6= 2. This gives rise to selection rules
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4.3 Translational Symmetry and Conservation of Momentum

Consider a transformation operator in 1 dimension D̂ which acts on the coordinates of a system as
a displacement D̂[f(x)] = f(x+l). The eigenfunctions of D̂ satisfy D̂|φ(x)〉 = d |φ(x)〉 = |φ(x+l)〉.
The general solutions to this equation are φ(x) = eikxu(x) where u(x) satisfies u(x) = u(x + l)
and k is complex.

This kind of translational symmetry exists when we have a crystal structure. Now consider a 1D
closed loop of N atoms: Uniqueness of the wavefunction requires that φ(x) = φ(x + Nl) ⇒ eikx =
eik(x+Nl). Thus possible wavefunctions must have real k and the form

φ(x) = e2πnix/Nlu(x); k = 2πn/Nl

The momentum of this state is given by:

−ih̄
∫

φ∗(x)
dφ(x)

dx
dx =

∫
φ∗(x)

[
2πh̄n

Nl
+

u′(x)

u(x)

]
φ(x)dx

The RHS first term gives is the familiar h̄k, which we associate with the momentum. If u(x)
has some definite parity, then u′(x) will have opposite parity and the second term will be the
integral of an odd function (i.e. zero by symmetry). Thus k is a quantum number associated with
translational symmetry, which in turn has an operator D̂ which commutes with the Hamiltonian
and is thus a constant of the motion. Translational symmetry is associated with conservation of
momentum.

For which the TISE, with the atom described by a potential V (x), and a particular value of k,
can be written

Ĥkuk(x) =
h̄2

2m

[
(k − i

d

dx
)2 + V (x)

]
uk(x) = Ekuk(x)

since the phase has been eliminated, we simply have a particle in a fixed volume uk(x) = uk(x+l)),
which means a series of discrete energy levels (bands). Thus all states can be labelled by k and a
band index n.

We can write the semiclassical group velocity of the wavefunction as

vg =
dω

dk
=

1

h̄

dE

dk

using E = h̄ω. A formal proof using the velocity operator gives the same result for the velocity.
Assuming that E does vary with k, this means we have a time-independent state which nevertheless
has a permanent, non-zero velocity through the lattice.

4.4 Application - electron in a crystalline solid

The above is the 1D statement of Bloch’s Theorem, the basis of study of electrons in solids. If we
imagine applying an electric field (E) in the x-direction, then the rate at which work is done is:

−eEvg =
dE

dt
=

dE

dk

dk

dt

Using the expression for vg we find that the rate of change of h̄k is proportional to the external
force, rather like Newton’s second law.

−eE = F = h̄
dk

dt
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If we now consider acceleration:

a =
dvg

dt
=

dvg

dk

dk

dt
=

1

h̄2

d2E

dk2
F

we find a quantity h̄2/d2E
dk2 which is known as the effective mass, relating external force to acceler-

ation in a solid, and allowing us to avoid further consideration of the effect of the lattice.

4.5 The Kronig-Penney Model

Figure 2: The Kronig-Penney potential and a Bloch function

In 4.1 u(x) is still completely general. The Kronig-Penney model considers a periodically repeating
square potential defined in one cell by V (x) = 0 (0 < x < b); V (x) = V0 (b < x < l), then we can
solve for u(x) in one cell. Like the finite square well, this is a tedious boundary condition problem
where matching value and slope of the wavefunction at the potential edge gives a 4x4 matrix to
diagonalise. The details are given in wikipedia(!) and lead to an equation the LHS of which is
drawn below:

cos k1b cos k2(l − b)− k2
1 + k2

2

2k1k2

sin k1b sin k2(l − b) = cos kl

where k1 =
√

2mE/h̄ and k2 =
√

2m(E − V0)/h̄, the appropriate free particle wavevectors, thus
for E < V0, k2 is imaginary. As the figure shows, multiple solutions are possible for all k, giving
certain “bands” of energy, but not others.

-1

E/Vo

+1

Energy

kl

0

π

Figure 3: Graph of function arising from multiple square-well problem: Allowed energy solutions
exist only where | cos kl| ≤ 1.
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The key point about this equation is that it cannot be solved for certain values of E, around
k1b = mπ. A plot of the left hand side of the equation against E/V0 illustrates this, solutions
for some value of k can be found only in the shaded regions of E. Moreover each shaded region
contains N allowed k = 2πn/Nl values. Thus if each atom contributes two electrons the lower
‘valence’ band will be filled (one of each spin in each state) and the upper ‘conduction’ band will
be empty. To get an electron to move (change to a different k-state) requires a lot of energy, so
this represents an insulator.

In the limit of V0 = 0, we get k = k1 = k2 =
√

2mE/h̄, the free electron result, while for very large
V0 >> E solutions are possible only for values of E which satisfy sin(k1b) ≈ 0, i.e. the square
well.

The wavefunction is a complex exponential of k1x or k2x, depending on whether it is in a well
or not. It is not and eigenfunction of the momentum operator. Thus although h̄k looks like a
momentum, it isn’t the eigenvalue of the momentum operator. It is called “crystal momentum”
and along with the “effective mass” gives a pair of quantities with which we can apply Newtonian
dynamics thinking to a crystal, ignoring the effects of the lattice.

In three dimensions, the topology of the bands becomes much more complicated: this is a topic
for solid state physics.

4.6 Radioactive decay and imaginary potentials

If the number of particles in a given state is reduced in time, then the total intensity of that state
is reduced. Consider a particle moving in a region of imaginary potential V (r) = −iV0. The
TDSE is:

ih̄
∂

∂t
|Φ, t〉 = [H0 − iV0]|Φ, t〉

Assume that the time independent part of the state is an combination of eigenstates of the real
part of the Hamiltonian:

|Φ, t〉 =
∑
n

cn(t) exp(−iEnt/h̄) |φn〉; where H0|φn〉 = En|φn〉

Following the same analysis as for TDSE, premultiplying by 〈m|, and for constant V0, Vmn = δmnV0

we obtain:

ih̄ċm = −iV0cm ⇒ |cm(t)|2 = |cm(0)|2e−2V0t/h̄

Thus the probability amplitude of the state decreases in time. An imaginary potential can be
used to represent destruction of particles, either by absorption (in a scattering process, perhaps)
or by radioactive decay. Obviously the ket is not a full description of the system, since that should
include information about the decay products. The lifetime of the state is τ = h̄/2V0.

Notice that −iV0 is not a Hermitian operator, and so it is not possible to perform a single mea-
surement of half life.
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