
7 The H+
2 Ion and Bonding

As the simplest example of covalent bonding, we consider the hydrogen molecular ion.

The hydrogen molecular ion H+
2 is a system composed of

two protons and a single electron. It is useful to use centre
of mass (cm) coordinates by defining the relative position
vector, R , of proton 2 with respect to proton 1, and the
position vector r of the electron relative to the centre of
mass of the two protons.
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The Schrödinger equation is
[
− h̄2

2µ12

∇2
R −

h̄2

2µe

∇2
r −

e2

(4πε0)r1
− e2

(4πε0)r2
+

e2

(4πε0)R

]
ψ(r, R) = Eψ(r, R)

where the reduced mass of the two-proton system is µ12 = M/2, with M the proton mass, and µe

is the reduced mass of the electron/two-proton system:

µe =
m(2M)

m+ 2M
' m

where m is the electron mass.

7.1 Born-Oppenheimer Approximation

Because nuclei are a great deal more massive than electrons, the motion of the nuclei is much
slower than that of the electrons. Thus the nuclear and electronic motions can be treated more or
less independently and it is a good approximation to determine the electronic states at any value
of R by treating the nuclei as fixed. This is the basis of the Born-Oppenheimer approximation.

In this approximation, the electron is described by an eigenfunction Uj(r,R) satisfying the Schrödinger
equation

[
− h̄2

2µe

∇2
r −

e2

(4πε0)r1
− e2

(4πε0)r2
+

e2

(4πε0)R

]
Uj(r,R) = Ej(R) Uj(r,R)

This is solved keeping R constant. For each R, a set of energy eigenvalues Ej(R) and eigenfunc-
tions Uj(r, R) is found. The functions Uj(r,R) are known as molecular orbitals.

The full wavefunction for the jth energy level at given R is taken to be the simple product

ψ(r, R) = Fj(R) Uj(r, R)

where Fj(R) is a wavefunction describing the nuclear motion.

Substituting this form into the full Schrödinger equation and using the electronic equation yields
[
− h̄2

2µ12

∇2
R + Ej(R)− E

]
Fj(R)Uj(r, R) = 0

A little vector calculus gives

∇2
R {Fj(R)Uj(r, R)} = ∇

R
·
{
∇

R
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R
·
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= Uj(r, R)∇2
R Fj(R) + Fj(R)∇2

R Uj(r, R)

+ 2
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)
·
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)
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Assuming that the variation of the molecular orbitals with inter-proton separation, R, is weak,
we can neglect the terms involving ∇

R
Uj(r, R), and ∇2

R Uj(r, R) leaving a single-particle type
Schrödinger equation for the nuclear motion

[
− h̄2

2µ12

∇2
R + Ej(R)− E

]
Fj(R) = 0

in which Ej(R) plays the role of a potential. We will return to this later.

7.2 The Electronic Ground State

We now try to investigate the lowest electronic levels of H+
2 . First we look for symmetries, and

note that, since r1 = r+R/2 and r2 = r−R/2, the electronic Hamiltonian is invariant under the
parity operation r → −r. If P̂ denotes the parity operator, then

[P̂ , Ĥ] = 0

These are commuting operators, so they have can have the same eigenfunctions. These eigenfunc-
tions are called gerade if the parity is even and ungerade if the parity is odd:

P̂U g
j (r, R) = U g

j (r, R), P̂Uu
j (r, R) = −Uu

j (r, R)

Now think about wave functions. If R is large, the system separates into a hydrogen atom and
a proton (two degenerate states). The hydrogen atom has a large spacing between levels, so we
use degenerate perturbation theory with 1s levels only. Quite generally, this procedure of taking
linear combinations of atomic orbitals is known as the LCAO method. Note that this basis set is
normalised, but neither complete nor orthogonal.

Since there must be solutions which are eigenfunctions of the parity operator, we take normalised
linear combinations of gerade or ungerade symmetry of 1s orbitals:

ψg = [u1s(r1) + u1s(r2)]/
√

2 and ψu = [u1s(r1)− u1s(r2)]/
√

2

We calculate the expectation value of the electronic Hamiltonian using these LCAO molecular
wavefunctions:

Eg,u(R) =
∫
ψg,u∗(r, R) Ĥ ψg,u(r, R) d3r = 〈u1s(r1)|Ĥ|u1s(r1)〉 ± 〈u1s(r1)|Ĥ|u1s(r2)〉

where + and - correspond to u and g respectively, giving Eg(R) and Eu(R) for each value of R;

The evaluation of the integrals is complicated, but the results have the form:

Eg(R) = E1s +
e2

(4πε0)R
× (1 + R/a0) exp(−2R/a0) + [1− (2/3)(R/a0)2] exp(−R/a0)

1 + [1 + (R/a0) + (1/3)(R/a0)2] exp(−R/a0)

and

Eu(R) = E1s +
e2

(4πε0)R
× (1 + R/a0) exp(−2R/a0)− [1− (2/3)(R/a0)2] exp(−R/a0)

1− [1 + (R/a0) + (1/3)(R/a0)2] exp(−R/a0)

where a0 is the Bohr radius and E1s is the ground-state energy of atomic hydrogen.

The two curves Eg −E1s and Eu −E1s are plotted as a function of R. Note that the curve which
corresponds to the symmetric (gerade) orbital exhibits a minimum at R = R0, where R0/a0 ' 2.5,
corresponding to Eg −E1s = −1.77 eV. Since this is an upper bound on the ground-state energy,
this implies that there is a stable bound state, a molecular ion. The curve represents an effective
attraction between the two protons. By contrast, the curve corresponding to the ungerade orbital
has no minimum, so that a H+

2 ion in this state will dissociate into a proton and a hydrogen
atom. If we think of the protons being attracted by the electron and repelled by each other, the
symmetrical state should be the more tightly bound because the electron spends more of its time
between the protons, where it attracts both of them. This is an example of covalent bonding.
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7.3 Rotational and Vibrational Modes

We can now study the effective one-body Schrödinger equation for the nuclear motion by setting
Ej(R) = Eg(R) for the ground state. Because Eg(R) only depends on the magnitude of R it
represents an effective central potential, so the solutions are of the form

F g(R) =
1

R
RNL(R)YLMl

(θ, φ)

where YLMl
(θ, φ) are the spherical harmonics and the functionRNL(R) satisfies the radial equation

[
− h̄2

2µ12

(
d2

dR2
− L(L+ 1)

R2

)
+ Eg(R)− E

]
RNL = 0

We can approximate the centrifugal barrier term by setting it equal to its value at R = R0, writing

Er =
h̄2

2µ12R2
0

L(L+ 1)

In this approximation we are treating the molecule as a rigid rotator. We can also approximate
Eg(R) by Taylor expanding about R = R0. Because this point is a minimum, the first derivative
is zero:

Eg(R) ' Eg(R0) +
1

2
k(R−R0)

2 + · · ·
where k is the value of the second derivative of Eg at R = R0.

With these two approximations, the radial equation becomes
[
− h̄2

2µ12

d2

dR2
+

1

2
k(R−R0)

2 − EN

]
RNL = 0
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where
EN = E − Eg(R0)− Er

This is the equation for a simple harmonic oscillator with energies

EN = h̄ω0(N +
1

2
), N = 0, 1, 2, · · ·

where ω0 =
√
k/µ12. The vibrational energies are of the order of a few tenths of an eV, whereas

the rotational energies are of the order of 10−3 eV. Both are much smaller than the spacing of the
electronic levels. Transitions between these various levels give rise to molecular spectra. The pure
rotational spectrum consists of closely-spaced lines in the infrared or microwave range. Transitions
which also involve changes to the vibrational state give rise to vibrational-rotational band spectra

7.4 Electronic states of the H2 Molecule

Electrons are fermions with spin 1
2
, so the gerade state can be double occupied, as can the unger-

ade state (four states in all, same as two 1s orbitals for each ion). The second electron changes
the structure of the wavefunction. Staying within LCAO, and ignoring spin, we can label basis
states as, e.g. u1

1s(r2) indicating the first electron on the second atom. The electrons are indis-
tinguishable, so the total wavefunctions (spin times spatial) must be eigenstates of parity and the
exchange operator P̂12 which switches the electron labels, e.g. P̂12u

1
1s(r2) = u2

1s(r2). They are
fermions, hence antisymmetric: P = −1.

Assuming both electrons are 1s and in the bonding g state, and ignoring their interaction, the
LCAO 1s2 spatial wavefunction is

ψ(r1, r2) = [u1
100(r1) + u1

100(r2)][u
2
100(r1) + u2

100(r2)]

This must be combined with a spin eigenfunction ↑↑, ↓↓, (↑↓ + ↓↑), or (↑↓ − ↓↑), where the first
arrow represents the spin state (ms = ±1) of the first electron. Since the spatial wavefunction
is symmetric under label exchange, in fact it must be combined with the antisymmetric spin
wavefunction ↑↓ − ↓↑ to give the overall wavefunction in spin and space.

ψ(r1, r2, s1, s2) = [u1
100(r1) + u1

100(r2)][u
2
100(r1) + u2

100(r2)][↑↓ − ↓↑]

This wavefunction describes two electrons, and is non-degenerate.

The second electron also adds an electron-electron repulsion to the Hamiltonian, which can be
treated by perturbation theory.

∆E = 〈ψ(r1, r2)| e2/4πε0|r1 − r2| |ψ(r1, r2)〉

There is a lot of subtlety here, since the electrons don’t interact with themselves, only with each
other, and we must avoid double-counting the interaction of 1-2 and 2-1. We’ll return to this in
more detail later in the context of Helium.

27


