
Physics 4 - Quantum Physics 2000-1 - Answers.

These answers are intended to reassure that you have got the problems right. They are

not model solutions, and would be unacceptably terse as examination solutions.

1 Perturbation and Matrix Elements

For integer n:
1√
a

cos
(2n + 1)πx

2a
;

1√
a

sin
2nπx

2a

For perturbation theory va should be much smaller than the difference between energy levels of different
n:

va <<
(2n + 1)π2h̄2

8ma2

First order energy shift: 〈n|vx|n〉 = 0.

Matrix elements, by symmetry, integer n,m: 〈2m|vx|2n〉 = 〈2m + 1|vx|2n + 1〉 = 0

For n odd, m even:

Vnm =
4av

π2

∫ π/2

−π/2
y cos(ny) sin(my)dy e.g. V12 =

32va

9π2

〈267|vx|387〉 = 〈m|vx|m + 738〉 = 0

2 Completeness and Orthonormality in Vectors

Consider a unit vector a = (1, 1, 3)/
√

11. What are its components (dot products) in the following
‘basis sets’ ui:

a) 1/
√

11, 1/
√

11, 3/
√

11: complete, orthogonal, normalised

b) (
√

3 + 1)/2
√

11, (1 −
√

3)/2
√

11: incomplete, orthogonal, normalised

c) (
√

3 + 3)/2
√

11, (
√

3 + 3)/2
√

11, 1/
√

11: complete, non-orthogonal, normalised

d) (
√

3 + 3)/2
√

11, (1 − 3
√

3)/2
√

11, 1/
√

11: complete, orthogonal, normalised

e) 0, 7/
√

11, −6/
√

11: complete, orthogonal, unnormalised

f) (3 −
√

3)/2
√

11, (1 + 3
√

3)/2
√

11, 1/
√

11, 0. overcomplete, non-orthogonal, unnormalised

g)
√

2/
√

11, 3/
√

11: incomplete, orthogonal, normalised

h) (1 +
√

3)/2
√

11, (1 −
√

3)/2
√

11,
√

2/
√

11: incomplete, non-orthogonal, normalised
Complete, orthogonal and normalised iff for any a:

∑

i

|ui · a|2 = 1 and ui · uj = δij

The Fourier series is orthogonal and tends to completeness as k→ ∞. Atomic orbitals centred on
different sites are not orthogonal and may become overcomplete. Thus Fourier series have an advantage
in completeness. However, the bonding orbitals in H2 are more similar to the atomic ones, and a basis
set of just two 1s wavefunctions gives as good a description of the bonding as could hundreds of Fourier
components.
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3 One electron atoms

a) 〈Φnl0|vl̂z|Φnl0〉 = 0; ; 〈Φ211|vl̂z|Φ211〉 = vh̄; ; 〈Φ21−1|vl̂z|Φ21−1〉 = −vh̄;

b)〈Φ100|vr2|Φ100〉 = 3v(a0/Z)2 ; 〈Φ200|vr2|Φ200〉 = 42v(a0/Z)2 ; 〈Φ210|vr2|Φ210〉 = 30v(a0/Z)2 ;

〈Φ21±1|vr2|Φ21±1〉 = 30v(a0/Z)2

c) 〈Φ100|vr|Φ100〉 = 1 · 5v(a0/Z) ; 〈Φ200|vr|Φ200〉 = 6v(a0/Z) ; 〈Φ210|vr|Φ210〉 = 2 · 5v(a0/Z) ;

〈Φ21±1|vr|Φ21±1〉 = 2 · 5v(a0/Z)

d) 〈Φ100|ve−2r/a0 |Φ100〉 = v( Z
Z+1

)3 ; 〈Φ200|ve−2r/a0 |Φ200〉 = vZ3[( 1
Z+2

)3 + ( 3Z2

(Z+2)5
+ 3Z

(Z+2)4
] ;

〈Φ21m|ve−2r/a0 |Φ21m〉 = fracv2( Z
Z+2

)5;

e) 〈Φ100|ve−Zr/a0|Φ100〉 = 8v
27

; 〈Φ200|ve−Zr/a0|Φ200〉 = v
32

; 〈Φ21m|ve−Zr/a0|Φ21m〉 = v
64

Notice that all off-diagonal terms with the same n are zero: none of these perturbations mix the
eigenstates. (a) actually commutes with the Hamiltonian, so doesn’t mix n=1 with n=2 states, in this
case the energy shifts are exact for any v. (b-e) mix states of n=1 and n=2, and so perturbation is
only correct when the matrix element is much less than the energy difference between the n=1 and n=2
states (0.75Z2 Ryd.).

4 Commutation

−ih̄, 0, 0, ih̄z, 0, ih̄p̂z, ih̄l̂z

5 Spin-Orbit Coupling

ĵ2 = (̂l + ŝ)2 = l̂2 + 2̂l · ŝ + ŝ2 ⇒ l̂ · ŝ =
1

2
[̂j2 − l̂2 − ŝ2]

For 1s and 2s, ∆E = 0

For 2p, fourfold degenerate, J = ± 3
2
, ∆E = η/2

For 2p, twofold degenerate, J = ± 1
2
, ∆E = −η

First order because we assume the perturbed wavefunctions are the same as the hydrogen ones. Degen-
eracy is only partly lifted because there is still symmetry with respect to rotating the atom. Note that
four levels are raised by η/2 while two are lowered by η: the ‘average energy’ of a 2p state in unaffected,
though in fact each atom will be in one state or the other, so this is not a conservation law.

6 Degenerate Perturbation

Other orthogonal state: cos(θ + π
2
)|α1〉 + sin(θ + π

2
)|α2〉.

〈α2|V̂ |α1〉 = V1 since operator must be Hermitian. Eigenvalues of the matrix are V0 ± V1, so splitting
between levels is 2V1. Eigenstates correspond to θ = ±π/4.

Initial state is |α1〉. When V̂ is applied it collapses onto |α(±π/4)〉. For both of these states |〈α(±π/4)|α2〉|2 =
1
2
, thus the probability of measuring |α2〉 when the perturbation is removed is 1

2
.

Time dependent perturbation theory would be inappropriate because the perturbation is larger than
the energy difference between the unperturbed states (which is zero).

7 Good quantum numbers in hydrogen

b), e) and j) are good sets. a) is not good since Lz and Lx do not commute. d) is not good since x does
not commute with the other operators. c), g), h), i) and j) do not give different labels to |200 ↑〉 and
|210 ↑〉. f) does not give different labels to |211 ↓〉 and |210 ↑〉.
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8 Periodic perturbation

Energy of φ± is h̄2k2/2m and they are eigenfunctions of Ĥ0.

Momentum of φ± is h̄k and they are eigenfunctions of p̂.

〈φ+|V̂ (x)|φ+〉 = 〈φ−|V̂ (x)|φ−〉 = 0

〈φ+|V̂ (x)|φ−〉 = 〈φ−|V̂ (x)|φ+〉 = 0 unless 2Lk = Nπ

Think about what this means - to first order, a free electron travelling through a periodic potential
(e.g. a crystal) is not affected by that potential! This is why the free electron theory of metals works
reasonably well.

If 2Lk = Nπ then : 〈φ+|V̂ (x)|φ−〉 = 〈φ−|V̂ (x)|φ+〉 = V0/2

Appropriate states are (φ+ ± φ−)/
√

2, which are still eigenfunctions of H0 but not of p̂.

This analysis is similar to the opening of a band gap by a periodic potential in solid state band theory
of a one dimensional crystal.

The non-zero matrix element from combining terms on either side of |k| = Nπ/2L is

∫ L

0
exp[i(Nπ + δ)x/2L]vo cos(2kx) exp[i(Nπ − δ)x/2L]dx = L/2

Thus the second order energy shift of the state at |k| = Nπ/2L − δ is:

∆E = − (voL/2)2

h̄22Nπδ/8mL2
= − mv2

0

Nh̄2πδ

i.e. its energy is reduced. Even second order perturbation breaks down as δ → 0 (because the unper-
turbed states are closer together in energy than the size of the perturbation), but we do know the exact
limit to which the energy shift should tend from the degenerate result above.

9 Stark Effect

There are 81 elements, of which 73 are zero. Of the remaining eight, there are four equal pairs
〈300|z|310〉, 〈320|z|310〉 and 〈32 ± 1|z|31 ± 1〉, and in fact only two are distinct since 〈320|z|310〉
= 〈32 ± 1|z|31 ± 1〉.
Defining a = 〈300|z|310〉 and b = 〈320|z|310〉, we can block diagonalise the matrix and find the
eigenvalues:

−
√

(a2 + b2), 0 ,
√

(a2 + b2), b, -b, b, -b, 0 , 0.

10 Neutral kaons

CP |K0〉 = |K0〉; CP |K0〉 = |K0〉

Consider a general state |φ〉 = a0|K0〉 + b0|K0〉
The total intensity is proportional to 〈φ|φ〉 = |a0|2 + |b0|2, of which |a0|2 are K0s. And
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〈φ|1
2
(Ŝ + 1)|φ〉 = |a0|2

Similarly, the intensity of K
0

is |b0|2 and comes from the expectation value of 1
2
(1 − Ŝ)

If we assume K0 intensity IK0(t) = |a0(t)|2, then.

|a0(t)|2 = 〈1
2
(Ŝ + 1)〉 =

1

4
|a0(0)|2

[

e−t/τ1 + e−t/τ2 + 2e−t/2τ1e−t/2τ2 cos(m12t)
]

〈Ŝ〉 = |a0(0)|2e−t/2τ1e−t/2τ2 cos(m12t)

〈Ŝ2〉 =
1

2
|a0(0)|2

(

e−t/τ1 + e−t/τ2
)

〈1
2
(ĈP + 1)〉 =

1

2
|a0(0)|2e−t/τ1

〈ĈP 〉 =
1

2
|a0(0)|2

(

e−t/τ1 − e−t/τ2
)

Leaving the matter, the appropriate collapsed eigenstates are |K0〉 and |K0〉
The final kaon intensity is a quarter of the initial intensity. Had the matter not intervened, the final
kaon intensity would have been half of the initial intensity.

11 Variational principle

a) a2 =

√

π2 − 6

12

mω

h̄
; 〈Ĥ0〉 = 0.568h̄ω

b) a2 =

√

35

2

h̄

mω
; 〈Ĥ0〉 = 0.598h̄ω

c) α =
mω

2h̄
; 〈Ĥ0〉 = 0.5h̄ω

d) a2 =
√

15π
h̄

mω
; 〈Ĥ0〉 = 0.548h̄ω

e) a2 =

√

2π2 − 3

6

mω

h̄
; 〈Ĥ0〉 = 1.607h̄ω

12 Degenerate Perturbation

Eigenstates: [sin πx
L

cos πy
2L

± sin πy
L

cos πx
2L

]/L

Energy shifts = ± 1024
81π4 vL2
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13 Properties of Legendre Polynomials

∫ π

0
Pl(cos θ)Pm(cos θ)dθ = δml

2

2l + 1

Pl(1) = 1 and P0(0) = 1, P2(0) = 0, P3(0) = 1
2
, P4(0) = 0.

For the dipole, V = eEz etc. ∆l = ±1 (θ integral), ∆ms = 0 (spin integral), ∆ml = ±1, 0 (φ integral)

For the quadrupole, V = eExy etc. ∆l = ±2, 0 (θ integral), ∆ms = 0 (spin integral), ∆ml = ±2,±1, 0
(φ integral)

14 Abstract Operators

Q̂ =

(

1 0
0 0

)

The eigenvectors are just |p〉 = [1 0] and |n〉 = [0 1], the eigenvalues are 1 and -1

T̂1 =

(

0 1
1 0

)

eigenstates of T̂1 are [
√

1
2
,
√

1
2
] and [

√

1
2
,−
√

1
2
] both with charge expectation values of 1

2

15 Density of states - Born Approximation

States between E and E+dE: mkL3

2h̄2π2
dE

States between E and E+dE and angle between θ and θ + dθ: mkL3

4h̄2π2
sin θdθdE

16 Impact Parameters

Impact parameter for 1eV p-electron: 2.75Å

17 Partial Waves

According to Levinson’s Theorem there are two bound states, both with l = 0.

There will be a minimum in the cross section when δ0 = 2π, E=1eV.

There are maxima in the cross section atδ0 = 3π/2: E = 1.78eV and when δ1 = π/2: E = 10eV .
However, the δ1 = π/2 maximum is coincident with the maxima from the other l-components, and thus
this is the energy with strongest scattering. The ratio of scattering strengths is 35/10 : 1/1.78 ≈ 6.2

At high energy, the scattering falls as σmax/2E, since the average value of sin2 δ ≈ 1/2.

18 Atomic Scattering

dσ

dθ
=

m2e4

4π2ε2
0h̄

4 [2k sin
θ

2
]−4[F (χ) − Z]2 =

e4

64π2ε2
0

sin−4 θ

2

1

m2v4
[F (χ) − Z]2
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19 Coulomb Scattering

No Planck constant - the expression is the same as the classical Rutherford cross section.

20 Hydrogen Scattering

Redefine axes for integral over all space such that polar axis is along χ. Use standard formula for
∫

re−ardr with complex a.

21 Centre of mass coordinates

With M = m1 + m2 and µ = (m1m2)/(m1 + m2) and total energy E = Er + ER, the equations are:

− h̄2

2µ

∂2

∂r2
Φ + V (r)Φ = ErΦ

− h̄2

2M

∂2

∂R2
Φ = ERΦ

22 Imaginary Potentials

Φ = AeV1t/h̄eikx−iwt + BeV1t/h̄e−ikx−iwt

Is the general solution, so that 〈Φ|Φ〉 = (A2
0 + B2

0)e
2V1t/h̄. The probability current density is then :

(
h̄k

m
)e2V1t/h̄(B2

0 − A2
0)

Particles are being created. If V1 were negative it would represent particles decaying.

23 Electron-electron scattering

(a)
dσ

dθ
= (

e2

8πε02E
)2 sin−4 θ

2

(b)
dσ

dθ
= (

e2

8πε02E
)2 1

2
(sin−2 θ

2
− cos−2 θ

2
)2

(c)
dσ

dθ
= (

e2

8πε02E
)2 1

2

(

[sin−2 θ

2
− cos−2 θ

2
]2 + sin−4 θ

2

)
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24 Bell’s Theory

(a) 1
4

(b) cos2(θA) cos2(θB)

(c) 1
2
cos2(θA − θB)

(d) 1
4

(e) 1
2
cos2 1

2
(θA − θB)

The factor of two arises because opposite-polarised photons (x and y) are at 90◦ while opposite spins
Sz = ±1

2
are at 180◦ to one another.

Hidden variables methods would give the same result for (a), (b) and (d), but will incorrectly predict
for (c) 1

4
cos2(θA − θB) and for (e) 1

4
cos2 1

2
(θA − θB)

The probability averaged over all θA and θB is 1
4

in every case.

25 Kronig-Penney

When l = b, the equation becomes simply cos k1b = cos kb, whence the energy is E = h̄2k2/2m.

When b = 0 we have cos k2l = cos kl. For E > V0 this is just the free electron again. For E < V0, k2 is
imaginary, iκ2 say, the equation becomes cosh κ2l = cos kl which has no solution except the trivial l=0.

The first two cases are simply free electrons, the final non solution shows that an electron must have at
least the potential energy of the region where it is found.

26 Hydrogen Molecular Ion

The ground state is simply one hydrogen atom and one bare proton. Since there is a choice for which
proton has the electron, it is doubly degenerate with energy E0. The wavefunction is simply the 1s
orbital in hydrogen. Refer to these states as |1〉 and |2〉.
The integrals are the electron wavefunction acted on by the electric field of the other proton, premul-
tiplied either by itself or the equivalent wavefunction on the other ion. Each increases towards infinity
at R=0 and drops to zero as R→ ∞. V12 is larger.

The energies of the perturbed states are:

E0 + V11 ± V12

The electron will fall into the lower energy state E0 + V11 − V12. This will produce a force between the
atoms of

dE

dR
=

dV11

dR
− dV12

dR

since dV12

dR
< dV11

dR
, this force is attractive. (Check it using MAPLE)

The protons do not collide because of their mutual Coulombic repulsion.

The approximation comes in not including n = 2 basis functions in the wavefunction. It will break
down when V12 ≈ 3

4
RH , where RH is the Rydberg constant.
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Some Integrals

∫ a

−a
(Any odd function) dx = 0

∫ a

0
x cos2(

nπx

2a
) dx =

a2

4

[

1 − 4

n2π2

]

n odd ;
∫ a

0
x sin2(

nπx

2a
) dx =

a2

4

[

1 +
4

n2π2

]

n odd

∫ a

0
x sin2(

nπx

2a
) dx =

∫ a

0
x cos2(

nπx

2a
) dx =

a2

4
n even

∫ π/2

−π/2
x cos2 x sin xdx =

4

9

∫

∞

0
xn exp(−ax)dx = n!a−(n+1)

∫ L

0
cos2(πx/L)dx

∫ L

0
sin2(πx/L)dx = L/2

∫ π/a

−π/a
x2 sin2 nax dx =

π(2n2π2 − 3)

6n2a3
;

∫ π/a

−π/a
x2 cos2 nax dx =

π(2n2π2 + 3)

6n2a3

∫ a

−a
a4 − 2a2x2 + x4 dx =

16

15
a5

∫

∞

−∞

x2 exp(−x2/σ2) dx =
σ3
√

π

2

∫

∞

−∞

exp(−x2/σ2) dx = σ
√

π

∫ a

0
x2(x − a)2 dx =

a5

30

∫ π/2

−π/2

∞
∑

n=1

cos2 nx

n2
dx =

π3

16

∫

∞

−∞

d3x

∫

∞

−∞

d3y
ρ(x) exp (−ik.y)

|x − y| =
∫

∞

−∞

d3x

∫

∞

−∞

d3z
ρ(x) exp−ik.(x + z)

|z| =
4π

k2

∫

∞

−∞

d3x ρ(x) exp−ik.x

∫

∞

0
x exp(−2x/a) cos(χx) =

a2(χ2a2 − 4)

(χ2a2 + 4)2
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