
Quantum Physics 2006/07

Lecture 15: Special Relativity Review; the Klein Gordon Equation

A Review of Special Relativity

Four-Vector Notation: The coordinates of an object or ‘event’ in four-dimensional space-
time, Minkowski space, form a contravariant four-vector whose components have ‘upper’
indices:

xµ ≡ (x0, x1, x2, x3) ≡ (ct, x)

Similarly, we define a covariant four-vector whose components have ‘lower’ indices:

xµ ≡ (x0, x1, x2, x3) ≡ (ct, −x)

A general four-vector aµ is defined in the same way:

aµ ≡ (a0, a1, a2, a3) ≡ (a0, a)

aµ ≡ (a0, a1, a2, a3) ≡ (a0, −a)

so that a0 = a0 and ai = −ai, i = 1, 2, 3. Upper and lower indices are related by the metric
tensor gµν :

aµ = gµν aν aµ = gµν aν

where

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




and we use the Einstein summation convention where there is an implicit sum over the
repeated index : ν = 0, 1, 2, 3.

The scalar product in Minkowski space is defined, for general 4-vectors aµ and bµ by

a · b ≡ aµbµ = aµb
µ = aµbνg

µν = aµbνgµν

= a0b0 − a · b

where a and b are ordinary 3-vectors.

NB we do not underline 4-vectors; every pair of repeated indices is implicitly summed
over and each pair consists of one upper & one lower index. An expression with two identical
upper (or lower) indices (eg aµbµ ) is simply wrong!

Lorentz transformations: Lorentz transformations are linear transformations on the
components of 4-vectors which leave invariant this scalar product:

a′ µ = Λµ
ν aν eg x′ µ = Λµ

ν xν

Strictly, these are homogeneous Lorentz transformations – translations are not included.
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The ‘standard’ Lorentz transformation is a ‘boost’ along the x direction

Λµ
ν =




cosh ω − sinh ω 0 0
− sinh ω cosh ω 0 0

0 0 1 0
0 0 0 1




where

tanh ω ≡ β ≡ v/c

cosh ω ≡ γ = (1− β2)−1/2 = (1− (v/c)2)−1/2

sinh ω = γ β

Hence ct′ = γ (ct− (v/c)x) and x′ = γ (x − vt) as usual, relating the time and space co-
ordinates of a given event in two inertial frames in relative motion:

Boost v

S’

x x’

S

Differential operators

∂µ ≡ ∂

∂xµ
=

(
1

c

∂

∂t
, ∇

)

∂µ ≡ ∂

∂xµ

=

(
1

c

∂

∂t
, −∇

)

d’Alembertian: ∂µ ∂µ = ∂µ ∂µ = ∂2 =
1

c2

∂2

∂t2
− ∇2 ( = )

(NB sometimes is called 2, so we will almost always use ∂2.)

Momentum and energy: The conserved 4-momentum is denoted by:

pµ ≡
(

E

c
, p

)

p2 =
E2

c2
− p · p = m2c2 for a free particle

or E2 = |p|2c2 + m2c4

where m is the mass of the particle.
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The Klein-Gordon equation

Recall that the Schrödinger equation for a free particle

{
− h̄2

2m
∇2

}
Ψ(r, t) = ih̄

∂

∂t
Ψ(r, t)

can be obtained from the (non-relativistic) classical total energy

E =
|p|2
2m

= H

by means of the operator substitution prescriptions

E → ih̄
∂

∂t
and p → −ih̄∇

The relativistic expression for the total energy of a free particle is

E2 = |p|2c2 + m2c4

Schrödinger (& Klein, Gordon, & Fock) suggested this as a starting point, thus obtaining

−h̄2 ∂2

∂t2
φ(r, t) = − h̄2 c2∇2φ(r, t) + m2c4φ(r, t) (1)

which is the Klein Gordon (KG) equation for a free relativistic particle.1 We can write the
KG equation in a manifestly covariant form as

(
+

m2c2

h̄2

)
φ(x) = 0 or

(
∂2 +

m2c2

h̄2

)
φ(x) = 0

where x is the usual four-vector (ct, x1, x2, x3). Thus, in covariant form, the operator
prescription is

p̂µ → ih̄
∂

∂xµ

= ih̄

{
1

c

∂

∂t
, −∇

}

Note: for a massless particle, m = 0, the KG equation reduces to the classical wave equation.

Free particle solutions: By substitution into the KG equation (??) we see it has plane-
wave solutions

φ(r, t) = exp{ik · r − iω t}
provided that ω, k & m are related by

h̄2ω2 = h̄2c2|k|2 + m2c4

Taking the square-root, we obtain: h̄ω = ±
{
h̄2c2|k|2 + m2c4

}1/2
.

Such solutions are readily seen to be eigenfunctions of the momentum operator and of the
energy operator, with eigenvalues p ≡ h̄k and E ≡ h̄ω respectively.

1The KG equation was first written down by Schrödinger but, due to the problems we will discover below,
he discarded it in favour of the non-relativistic equation that bears his name.
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Thus, if we interpret h̄ω as an allowed total energy of the free particle solution, there is an
ambiguity in the sign of the total energy: there are both +ve and −ve energy solutions, and
these have energy

E = ±
√
|p|2c2 + m2c4

The positive-energy eigenvalues are in agreement with the classical relation betwen energy,
mass, and momentum, but what are we to make of particles with negative total energy?

If we define the four-vector kµ ≡ (
ω

c
, k) then we can write the solution in covariant form

φ(x) ≡ exp(−ik · x) ≡ exp(−ikµxµ) ≡ exp(−ipµxµ/h̄)

and thus interpret the four-momentum as pµ = h̄kµ.

Continuity equation and probability interpretation

Denote the Schrödinger equation by (SE) and its complex-conjugate by (SE)∗. By consider-
ing

Ψ∗ (SE) − Ψ (SE)∗ ,

we get a continuity equation
∂

∂t
ρ + ∇ · j = 0

where ρ = Ψ∗ Ψ and j = − ih̄

2m
(Ψ∗∇Ψ − Ψ∇Ψ∗)

are the probability density and probability current respectively. (Integrate over any volume,
and use the divergence theorem to see why.) We can repeat this for the Klein Gordon
equation, and obtain the quantities

ρ =
ih̄

2mc2

(
φ∗

∂φ

∂t
− φ

∂φ∗

∂t

)

j = − ih̄

2m
(φ∗∇φ − φ∇φ∗)

1. j is identical in form to the non-relativistic Schrödinger current (we have chosen to
normalise j so that this is the case.).

2. ρ can be shown to reduce to φ∗φ in the non-relativistic limit.

3. The candidate for the probability density, ρ(x), is no longer positive definite (negative
energy solutions have ρ < 0 (exercise). Therefore there is no obvious probability-
density interpretation.

Summary: The Klein Gordon (KG) equation is the simplest relativistically-covariant gen-
eralisation of the Schrödinger equation. Its solutions have the usual desirable properties for
the description of a relativistic quantum particle, but they also describe particles of negative
total energy, together with negative probabilities for finding them!

Considering the positive energy solutions only, the KG equation with a Coulomb potential
can be solved exactly for the energy levels of the hydrogen atom. The non-relativistic
expansion reproduces exactly the relativistic kinetic energy correction ∆EKE obtained in
perturbation theory in Lecture 6, page 2, but it doesn’t account for either the spin-orbit
correction or the Darwin term, so something else is required. . .
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