
Solutions to Tutorial Sheet 1: Mainly revision

1. Given the expansion of an arbitrary wavefunction or state vector as a linear superpo-
sition of eigenstates of the operator Â

Ψ(r, t) =
∑

i

ci(t)ui(r) or |Ψ, t〉 =
∑

i

ci(t) |ui〉

use the orthonormality properties of the eigenstates to prove that

ci(t) =
∫
u∗i (r)Ψ(r, t) d3r or ci(t) = 〈ui|Ψ, t〉

Work through the proof in both wavefunction and Dirac notations.

Firstly in wavefunction notation the expansion is:

Ψ(r, t) =
∑

i

ci(t)ui(r)

Multiply both sides by u∗j(r) and integrate over all space:

∫
u∗j(r)Ψ(r, t) d3r =

∑

i

ci(t)
∫
u∗j(r)ui(r) d3r =

∑

i

ci(t) δji = cj(t)

where we have used the orthonormality property of the eigenfunctions:

∫
u∗j(r)ui(r) d3r = δji

and the so-called sifting property of the Kronecker delta:

∑

i

ci(t) δji = cj(t)

Relabelling the free index j → i gives the desired result:

ci(t) =
∫
u∗i (r)Ψ(r, t) d3r

In Dirac notation we start from the expansion:

|Ψ, t〉 =
∑

i

ci(t) |ui〉

and take the scalar product of both sides with the bra vector 〈uj| to give

〈uj|Ψ, t〉 =
∑

i

ci(t) 〈uj|ui〉 =
∑

i

ci(t) δji = cj(t)

using the orthonormality property 〈uj|ui〉 = δji as before.
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The state |Ψ, t〉 is said to be normalised if 〈Ψ, t|Ψ, t〉 = 1. Show that this implies that

∑

i

|ci(t)|2 = 1

Hint: use the expansion |Ψ, t〉 =
∑

i

ci(t)|ui〉 and the corresponding conjugate expansion

〈Ψ, t| = ∑

j

c∗j(t)〈uj|.

Substituting for 〈Ψ, t| and |Ψ, t〉 in 〈Ψ, t|Ψ, t〉 we find

〈Ψ, t|Ψ, t〉 =
∑

j

∑

i

c∗j(t)ci(t)〈uj|ui〉 =
∑

j

∑

i

c∗j(t)ci(t)δji =
∑

i

|ci(t)|2

where we have used the orthonormality of the eigenbasis 〈uj|ui〉 = δji and the sifting
property of the Kronecker delta. Thus we have the result quoted in Lecture 1:

∑

i

|ci(t)|2 = 1

If the expectation value 〈Â〉t = 〈Ψ, t|Â|Ψ, t〉, show by making use of the same expansions
that

〈Â〉t =
∑

i

|〈ui|Ψ, t〉|2 Ai

and give the physical interpretation of this result.

The suggested expansion of the state vector is, in Dirac notation,

|Ψ, t〉 =
∑

i

ci(t)|ui〉 where ci(t) = 〈ui|Ψ, t〉

and, correspondingly,
〈Ψ, t| = ∑

j

c∗j(t)〈uj|

Substituting for |Ψ, t〉 and 〈Ψ, t| in the expression for the expectation value gives

〈Â〉t =
∑

j

∑

i

c∗j(t)ci(t)〈uj|Â|ui〉 =
∑

j

∑

i

c∗j(t)ci(t)Ai〈uj|ui〉

where we have used the eigenvalue equation for Â:

Â|ui〉 = Ai|ui〉
We again use the orthonormality of the eigenbasis 〈uj|ui〉 = δji to write

〈Â〉t =
∑

j

∑

i

c∗j(t)ci(t)Aiδji =
∑

i

|ci(t)|2Ai =
∑

i

|〈ui|Ψ, t〉|2 Ai

which is the desired result. As discussed in lectures, the interpretation is that |ci(t)|2
is the probability of getting the result Ai in a measurement of the observable A, and
the mean value of a set of repeated measurements of A is just a sum over the possible
values weighted by the probabilities of obtaining them.
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2. The observables A and B are represented by operators Â and B̂ with eigenvalues {Ai},
{Bi} and eigenstates {|ui〉}, {|vi〉} respectively, such that

|v1〉 = {
√

3 |u1〉+ |u2〉}/2
|v2〉 = {|u1〉 −

√
3 |u2〉}/2

|vn〉 = |un〉, n ≥ 3.

Show that if {|ui〉} is an orthonormal basis then so is {|vi〉}.
This problem is designed to test your understanding of measurement and wavefunction
collapse.

Orthonormality of the two bases means that

〈ui|uj〉 = δij and 〈vi|vj〉 = δij

Given the expressions for |v1〉 and |v2〉 in terms of |u1〉 and |u2〉 we see that

〈v1|v1〉 =
1

4

(√
3〈u1|+ 〈u2|

) (√
3|u1〉+ |u2〉

)

=
1

4

(
3〈u1|u1〉+

√
3〈u1|u2〉+

√
3〈u2|ui〉+ 〈u2|u2〉

)
=

1

4
(3 + 0 + 0 + 1) = 1

as it should. Similarly,

〈v1|v2〉 =
1

4

(√
3〈u1|+ 〈u2|

) (
|u1〉 −

√
3|u2〉

)

=
1

4

(√
3〈u1|u1〉 − 3〈u1|u2〉+ 〈u2|ui〉 −

√
3〈u2|u2〉

)
=

1

4

(√
3− 0 + 0−

√
3
)

= 0

By the same methods you can show that 〈v2|v2〉 = 1 and 〈v2|v1〉 = 0 so that the rela-
tions between |v1〉, |v2〉 and |u1〉, |u2〉 are consistent with both bases being orthonormal
(for n ≥ 3 it is trivial).

A certain system is subjected to three successive measurements:

(1) a measurement of A followed by

(2) a measurement of B followed by

(3) another measurement of A
Show that if measurement (1) yields any of the values A3, A4, . . . then (3) gives the
same result but that if (1) yields the value A1 there is a probability of 5

8
that (3) will

yield A1 and a probability of 3
8

that it will yield A2. What may be said about the
compatibility of A and B ?

If measurement (1) yields any of the eigenvalues A3, A4, . . . then the state of the system
immediately afterwards is the corresponding eigenstate |u3〉, |u4〉, . . . of the operator Â.
But |u3〉 = |v3〉 etc. and so measurement (2) is made with the system in an eigenstate
of B̂, guaranteeing the outcome of (2) and leaving the state of the system unchanged,
since for n ≥ 3, |un〉 = |vn〉. Thus measurement (3) is certain to yield the same result
as (1).
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If measurement (1) yields the result A1, however, the system is forced into the state
|u1〉 so that measurement (2), of the observable B, is made with the system in the state
|u1〉. Inverting the given equations shows that

|u1〉 =
{√

3|v1〉+ |v2〉
}
/2

|u2〉 =
{
|v1〉 −

√
3|v2〉

}
/2

The first of these is just the expansion of |u1〉 in the eigenbasis of B̂ and the coefficients
are the probability amplitudes from which we can compute the probabilities of getting
the various possible values of B:

prob of B1 =

∣∣∣∣∣

√
3

2

∣∣∣∣∣

2

=
3

4

prob of B2 =
∣∣∣∣
1

2

∣∣∣∣
2

=
1

4

Suppose that we get the result B1. The wavefunction has collapsed onto the corre-
sponding eigenstate of B̂, that is |v1〉. But we know that

|v1〉 = {
√

3 |u1〉+ |u2〉}/2
which is the expansion of |v1〉 in the eigenbasis of Â, enabling us to compute the
probabilities of getting the various possible values of A:

prob of A1 =

∣∣∣∣∣

√
3

2

∣∣∣∣∣

2

=
3

4

prob of A2 =
∣∣∣∣
1

2

∣∣∣∣
2

=
1

4

On the other hand, if we get the result B2 from measurement (2), the system is left in
the state |v2〉 and

|v2〉 = {|u1〉 −
√

3 |u2〉}/2
so that in this case when we make measurement (3)

prob of A1 =
∣∣∣∣
1

2

∣∣∣∣
2

=
1

4

prob of A2 =

∣∣∣∣∣

√
3

2

∣∣∣∣∣

2

=
3

4

Thus the probability of getting the result A1 in measurement (3), irrespective of the
outcome of measurement (2), is given by

(prob that (2) gives B1) × (prob that (3) gives A1 given outcome B1 in (2))

+

(prob that (2) gives B2) × (prob that (3) gives A1 given outcome B2 in (2))

=
3

4
× 3

4
+

1

4
× 1

4
=

5

8
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Since (3) can only give A1 or A2, the probability of getting A2 is 3/8.

We can represent the situation by a probability tree:

Measurement (1):

Measurement (2):

Measurement (3):

A1

A A2 A11

B 1 2B

A2

1/41/43/4 3/4

3/4 1/4

Â and B̂ are not compatable operators, even though many of their eigenstates are the
same.

3. The normalised energy eigenfunction of the ground state of the hydrogen atom (Z = 1)
is

u100(r) = R10(r)Y00(θ, φ) = C exp(−r/a0)

where a0 is the Bohr radius and C is a normalisation constant. For this state

(a) Calculate the normalisation constant, C, by noting the useful integral
∫ ∞

0
exp(−br) rn dr = n!/bn+1, n > −1

Alternatively, you can use the computer algebra program Maple if you know how
to!

The normalisation condition is as usual
∫
u∗100(r)u100(r) d3r = 1

which in spherical polar coordinates gives
∫ 2π

φ=0

∫ π

θ=0

∫ ∞

r=0
|C|2 exp(−2r/a0)r

2 sin θdrdθdφ = 1

The φ integration gives 2π, whilst the θ integration gives 2 so that

4π|C|2
∫ ∞

0
exp(−2r/a0)r

2 dr = 1

We use the given integration formula and we find that

∫
exp(−2r/a0)r

2 dr = 2!
(
a0

2

)3

=
a3

0

4

Making the usual convention that the normalisation constant C is real and positive
gives

C =
1√
πa3

0

; u100(r) = (πa3
0)
−1/2 exp(−r/a0)

Maple can be used to evaluate the required integral (and related integrals which occur
in the subsequent parts of the question).
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> assume(a>0);

> int(exp(-2*r/a)*r*r,r=0..infinity);

(b) Determine the radial distribution function, D10(r) ≡ r2|R10(r)|2, and sketch its
behaviour; determine the most probable value of the radial coordinate, r, and the
probability that the electron is within a sphere of radius a0; recall that Y00(θ, φ) =
1/
√

4π; again, you can use Maple to help you if you know how;

Recall that
un`m(r) = Rn`(r) Y`m(θ, φ)

so that

u100(r) = R10(r) Y00(θ, φ) =
1√
4π
R10(r)

Using the result for u100(r) from the previous part of the question,

D10(r) ≡ r2|R10(r)|2 =
4r2

a3
0

exp(−2r/a0)

To plot the radial distribution using Maple, use the following Maple command:

> plot(4*r*r*exp(-2*r),r=0..3);

This will produce a graph with a0 scaled to 1.

D10(r) dr is the probability of finding the electron between r and r + dr, so that the
most probable value of r corresponds to the maximum of the distribution, which may
be found by differentiation with respect to r;

dD10

dr
=

8r

a3
0

exp(−2r/a0)− 8r2

a4
0

exp(−2r/a0) =
8r

a4
0

(a0 − r) exp(−2r/a0)

Thus the derivative vanishes at the origin and at r = a0, the latter corresponding to
the maximum of D10.

The following piece of Maple finds the points at which the derivative vanishes:

> assume(a>0);

> d:=4*r*r*exp(-2*r/a)/a**3;

> dprime:=diff(d,r);

> solve({dprime=0},{r});

The probability that the electron is within a sphere of radius a0 is given by integrating
the radial probability distribution from r = 0 to r = a0:

∫ a0

0
D10(r) dr =

4

a3
0

∫ a0

0
r2 exp(−2r/a0) dr

Unfortunately, the given integral doesn’t help because here the upper limit is a0 and
not ∞. However, integrating by parts or using Maple yields the result

probability = 1− 5e−2 = 0.32

The Maple is
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> d:=4*r*r*exp(-2*r/a)/a**3;

> prob:=int(d,r=0..a);

> evalf(prob);

(c) Calculate the expectation value of r;

〈r〉 =
∫
u∗100(r)r u100(r) d3r =

4π

πa3
0

∫ ∞

0
r3 exp(−2r/a0) dr

Using the given integral, or Maple,

〈r〉 =
4

a3
0

3!
(
a0

2

)4

=
3

2
a0

So, the mean value of r is 50% larger than the most probable value. This is due to the
long “tail” of the wavefunction.

(d) Calculate the expectation value of the potential energy, V (r);

〈V (r)〉 = − e2

4πε0

∫
u∗100(r)

1

r
u100(r) d3r

= − e2

4πε0
4π

1

πa3
0

∫ ∞

0
r exp(−2r/a0) dr

= − e2

4πε0

4

a3
0

(
a0

2

)2

from the given integral

= − e2

4πε0a0

(e) Calculate the uncertainty, ∆r, in r.

The uncertainty is defined by

∆r ≡
√
〈r2〉 − 〈r〉2

so we need to compute 〈r2〉:

〈r2〉 =
∫
u∗100(r) r

2 u100(r) d3r

= 4π
1

πa3
0

∫ ∞

0
r4 exp(−2r/a0) dr

=
4

a3
0

4!
(
a0

2

)5

= 3a2
0

Thus

∆r =
√

3a2
0 − (1.5a0)2 =

√
3

2
≈ 0.87a0
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4. At t = 0, a particle has a wavefunction ψ(x, y, z) = Az exp[−b(x2 + y2 + z2)], where
A and b are constants.

(a) Show that this wavefunction is an eigenfunction of L̂2 and of L̂z and find the cor-
responding eigenvalues. Hint: express ψ in spherical polars and use the spherical
polar expressions for L̂2 and L̂z.

L̂2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]

L̂z = −ih̄ ∂
∂φ

First note that x2 + y2 + z2 = r2 and z = r cos θ, so that

u(r, θ, φ) = Ar cos θ exp(−br2)

In spherical polars,

L̂2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]

Since u is actually independent of φ, we can ignore the second term when we apply L̂2

to the wavefunction u and note that

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
cos θ

)
=

1

sin θ

∂

∂θ

(
− sin2 θ

)
= −2 cos θ

Thus
L̂2 u(r, θ, φ) = 2h̄2Ar cos θ exp(−br2) = 2h̄2u(r, θ, φ)

so that u(r, θ, φ) is an eigenfunction of L̂2 with eigenvalue 2h̄2. Writing 2h̄2 = `(`+1)h̄2,
we see that the orbital angular momentum quantum number ` = 1.

We have already noted that u(r, θ, φ) is independent of φ which tells us immediately
that it is an eigenfunction of L̂z belonging to eigenvalue m = 0. Explicitly, we note
that in spherical polar coordinates,

L̂z = −ih̄ ∂
∂φ

so that L̂zu(r, θ, φ) = 0. A short cut to the answer is to note that u(r, θ, φ) ∝ Y10(θ, φ)
and hence ` = 1 and m = 0.

(b) Sketch the wavefunction, e.g. with a contour plot in the x=0 plane.

The function is zero at the origin. It has positive and negative lobes pointing aong
the z-axis, decaying away to zero far from the origin. In fact, it looks a bit like a
hydrogenic p-orbital (l = 1), though it isn’t quite the same.
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y

z

+

_

Positive lobe

Negative lobe

Zero for z=0

(c) Can you identify the Hamiltonian for which this is an energy eigenstate ?

The given function is an eigenfunction of the 3-dimensional isotropic simple harmonic
oscillator with b related to the mass m and angular frequency ω through b = mω/2h̄.
It is the state with nx = ny = 0 and nz = 1.

note: the 2007 version asked you to identify a physical system - this is rather challeng-
ing, an “atom trap” can capture single particles, which won a 1997 Nobel Prize for
Chu, Cohen-Tannoudji and Phillips, and another in 2001 for Wieman, Ketterle and
Cornell who trapped millons of Rubidium atoms in the same quantum state, forming
a Bose Condensate. Optical tweezers are a method by which a particle can be trapped
in a laser cavity. If you don’t know about this stuff, look it up.

More esoterically (see 2007 exam), a neutrino trapped in the gravitational field of a
constant density planet is a possibility!
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