Solutions to Tutorial Sheet 1: Mainly revision

1. Given the expansion of an arbitrary y)avefunctz'on or state vector as a linear superpo-
sition of eigenstates of the operator A

U(r,t) = Zci(t)ui(z) or |V t)= Zci(t) |u;)

7 i

use the orthonormality properties of the eigenstates to prove that
q@:/@@ﬂ@ﬂ&TM'ﬂﬂ:wWﬁ
Work through the proof in both wavefunction and Dirac notations.

Firstly in wavefunction notation the expansion is:

U(rt) =) ci(t)ui(r)

Multiply both sides by u}(r) and integrate over all space:
[ @ ar =3 a®) [ wmu) dr =3 ) s = o)

where we have used the orthonormality property of the eigenfunctions:

/uj(z)ul(z) dBr = i
and the so-called sifting property of the Kronecker delta:

Y alt) 0y = ¢4(t)

)

Relabelling the free index 7 — ¢ gives the desired result:

at) = [ @b dr
In Dirac notation we start from the expansion:

W, 1) = cilt) [us)

%

and take the scalar product of both sides with the bra vector (u;| to give

(g, 8) =D cilt) (uslui) = 3 ei(t) 955 = (1)

3 (2

using the orthonormality property (u;|u;) = ¢;; as before.



The state |V, t) is said to be normalised if (V,t|V,t) = 1. Show that this implies that

Zlcz |2_1

Hint: use the expansion |V, t) = Z ¢i(t)|u;) and the corresponding conjugate expansion

(Wt = Y O] z

Substituting for (U, ¢| and |V, t) in (¥, ¢V, ) we find

(U, t|0, 1) ZZC ) (uj|ug) ZZ ji:Z|Ci(t)2

where we have used the orthonormality of the eigenbasis (u;|u;) = d;; and the sifting
property of the Kronecker delta. Thus we have the result quoted in Lecture 1:

Slet)P =1

If the expectation value (A)t = (U, t]fl\\lf, t), show by making use of the same expansions
that )

Ay = w2 A
and give the physical interpretation of this result.

The suggested expansion of the state vector is, in Dirac notation,

(W, t) = ci(t)|u;) where ¢;(t) = (u;| ¥, ¢)

%

and, correspondingly,

(W0 =Y )

Substituting for |¥,¢) and (¥, ¢| in the expression for the expectation value gives

(A), = ZZ ) (u; | Alug) ZZ A, (ujlu;)

where we have used the eigenvalue equation for A:
Alusy = Ailus)
We again use the orthonormality of the eigenbasis (u;|u;) = d;; to write

At—zz A(sz Z |C’L ‘A Z ‘ul“lj t>|2

which is the desired result. As discussed in lectures, the interpretation is that |c;(¢)|?
is the probability of getting the result A; in a measurement of the observable A, and
the mean value of a set of repeated measurements of A is just a sum over the possible

values weighted by the probabilities of obtaining them.
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2. The observables A and B are represented by operators A and B with eigenvalues { A;},
{B;} and eigenstates {|u;)}, {|vi)} respectively, such that

o) = {V3uw) +Juz)}/2
[v2) = {lur) = V3uz)}/2

lvn) = |up), n>3.

Show that if {|u;)} is an orthonormal basis then so is {|v;)}.

This problem is designed to test your understanding of measurement and wavefunction
collapse.

Orthonormality of the two bases means that
(uilus) = b and  (vilv;) = b

Given the expressions for |v;) and |ve) in terms of |uy) and |us) we see that

<'Ul|U1> - le <\/§<U1| + <U2|) (\/§|u1> + |u2>)
- i (3¢unfur) + v/3{uslua) + v/3{ualus) + (uzluz) ) = i (3+0+0+1)=1

as it should. Similarly,

(o) = 5 (VBlua] + (el (Jun) — V3lu)

- le (\/§<u1\m) — 3(u1|ua) + (uglu;) — \/§<u2\u2>) = 411 (\/5 _040— \/g) _0

By the same methods you can show that (ve|vy) = 1 and (vs]v1) = 0 so that the rela-
tions between |v), |v) and |uy), |us) are consistent with both bases being orthonormal
(for n > 3 it is trivial).

A certain system is subjected to three successive measurements:

(1) a measurement of A followed by
(2) a measurement of B followed by

(3) another measurement of A

Show that if measurement (1) yields any of the values As, Ay, ... then (3) gives the
same result but that if (1) yields the value A, there is a probability of 2 that (3) will
yield Ay and a probability of% that it will yield Ay.  What may be said about the
compatibility of A and B ¢

If measurement (1) yields any of the eigenvalues As, Ay, ... then the state of the system
immediately afterwards is the corresponding eigenstate |ug), [u4), . .. of the operator A.
But |uz) = |vs) etc. and so measurement (2) is made with the system in an eigenstate
of é, guaranteeing the outcome of (2) and leaving the state of the system unchanged,
since for n > 3, |u,) = |v,). Thus measurement (3) is certain to yield the same result
as (1).



If measurement (1) yields the result A;, however, the system is forced into the state
|u1) so that measurement (2), of the observable B, is made with the system in the state
|up). Inverting the given equations shows that

ua) = {VBJvr) + |va) } /2
) = {lon) = V3lua) } /2
The first of these is just the expansion of |u;) in the eigenbasis of B and the coefficients

are the probability amplitudes from which we can compute the probabilities of getting
the various possible values of B:

V3P 3
tB = |—| =~
prob of By |2 1
12 1

prObOfBQ = ‘2 :Z

Suppose that we get the result B;. The wavefunction has collapsed onto the corre-
sponding eigenstate of B, that is |vy). But we know that

v1) = {V/3|u1) + Juz)}/2

which is the expansion of |v;) in the eigenbasis of A, enabling us to compute the
probabilities of getting the various possible values of A:

V3[' 3

fA, = |—| =-
prob of A, ‘2 1
1?2 1

prob of Ay = ‘2 =1

On the other hand, if we get the result B, from measurement (2), the system is left in
the state |vg) and

|va) = {Jur) — V3 uz)}/2

so that in this case when we make measurement (3)

1?2 1

prob of A; = ‘2 =1
2

3 3

prob of Ay = ‘\2_ =1

Thus the probability of getting the result A; in measurement (3), irrespective of the
outcome of measurement (2), is given by

(prob that (2) gives By) x (prob that (3) gives A; given outcome B in (2))
+
(prob that (2) gives By) x (prob that (3) gives A; given outcome Bj in (2))



Since (3) can only give A; or Ay, the probability of getting A, is 3/8.

We can represent the situation by a probability tree:

Measurement (1): A 1
3/4 va
M easurement (2): B, Bo
3/4 w V4 3/4
Measurement (3): A1 Ar A A

2

A and B are not compatable operators, even though many of their eigenstates are the
same.

3. The normalised energy eigenfunction of the ground state of the hydrogen atom (Z = 1)
18

u100(r) = Rio(r)Yoo(0, ) = C exp(—r/ao)

where ag 1s the Bohr radius and C is a normalisation constant. For this state

(a) Calculate the normalisation constant, C, by noting the useful integral
/ exp(—br)r"dr =n!/b"" n> -1
0

Alternatively, you can use the computer algebra program Maple if you know how
to!

The normalisation condition is as usual
[ ioo(@yor) dr = 1

which in spherical polar coordinates gives

2m ™ 00
/ / / |C|? exp(—2r/ag)r? sin 0drdfd¢ = 1
$=0J6=0 Jr=0
The ¢ integration gives 27, whilst the 6 integration gives 2 so that
47T|C|2/ exp(—2r/ag)r? dr =1
0

We use the given integration formula and we find that

3 3
/eXp(_Zr/ao)T2 dr = 2! (azo) — %

Making the usual convention that the normalisation constant C' is real and positive

gives
1

C=——: uolr) = (ma) /2 exp(—r/a)

)

™a

Maple can be used to evaluate the required integral (and related integrals which occur
in the subsequent parts of the question).
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> assume (a>0) ;
> int(exp(-2*r/a)*r*r,r=0..infinity);

(b) Determine the radial distribution function, Dio(r) = r?|Rio(r)|?, and sketch its
behaviour; determine the most probable value of the radial coordinate, v, and the
probability that the electron is within a sphere of radius ag; recall that Yoo(6, ¢) =
1/\/47; again, you can use Maple to help you if you know how;

Recall that
uném(z) - Rnf(r) }/Em(07 ¢)

so that
1

Var

Using the result for uyg0(r) from the previous part of the question,

u100(1) = Rio(r) Yoo(0, ) = Rip(r)

472
Dyo(r) = 7‘2|Rlo(7°)|2 = ?exp(—%/ao)
0

To plot the radial distribution using Maple, use the following Maple command:
> plot (4d*xr*r*exp(-2*r) ,r=0..3);

This will produce a graph with aq scaled to 1.

Dyo(r) dr is the probability of finding the electron between r and r + dr, so that the
most probable value of r corresponds to the maximum of the distribution, which may
be found by differentiation with respect to r;

dDyy 8 812 8
drlo — ag exp(—2r/ag) — C% exp(—2r/ag) = ag(ao — ) exp(=2r/ao)

Thus the derivative vanishes at the origin and at r = ag, the latter corresponding to
the maximum of Dyg.

The following piece of Maple finds the points at which the derivative vanishes:

> assume(a>0);

> d:=4xrxr*xexp(-2*r/a)/a**3;
> dprime:=diff(d,r);

> solve({dprime=0},{r});

The probability that the electron is within a sphere of radius ag is given by integrating
the radial probability distribution from r = 0 to r = ag:

ag 4 ag 9
/ Dy(r) dr = —3/ r<exp(—2r/ag) dr
0 ag JO
Unfortunately, the given integral doesn’t help because here the upper limit is ag and
not co. However, integrating by parts or using Maple yields the result
probability =1 — 5e™% = 0.32

The Maple is



> d:=4*rxrxexp(-2xr/a)/a**3;
> prob:=int(d,r=0..a);
> evalf (prob);

(c) Calculate the expectation value of r;

VG IES
(ry = /u’{oo(z)r u100(T) dBr = — rs exp(—2r/ag) dr
7TCLO 0
Using the given integral, or Maple,
4 Qo 4 3
_ 2 () _9
() a3 2\ 2 910

So, the mean value of r is 50% larger than the most probable value. This is due to the
long “tail” of the wavefunction.

(d) Calculate the expectation value of the potential energy, V(r);

2

V) = =i [ v | wwl) &
= — ¢ 4771/007"@( (—2r/ap) dr
ey mag Jo P 0
= —ﬁ 4 (%)2 from the given integral
dmey ad \ 2
o2
B _471'60(10

(e) Calculate the uncertainty, Ar, in r.

The uncertainty is defined by
Ar =4/ (r?) — (r)?

so we need to compute (r?):
0% = [ wion(x) 7 wo(r) d’r

1 0
= 47r—3/ r4exp(—2r/a0) dr
0

Thus



4. At t =0, a particle has a wavefunction ¥(x,y,2) = Az exp[—b(z? + y* + 2%)], where
A and b are constants.

(a) Show that this wavefunction is an eigenfunction of L? and of L. and find the cor-
responding eigenvalues. Hint: express v in spherical polars and use the spherical
polar expressions for L*? and L.,.

A 1 0 0 1 02
2 = —p? |\ sinl— | + .-
h [sin@ 00 (sm 969) + sin? 6 8¢2]
A 0
L, = —ih—
P zha¢

First note that 22 + vy + 22 = r? and z = r cos 0, so that
u(r, 0, ¢) = Arcosf exp(—br?)

In spherical polars,

2 | L0 (g0, L O
Lr==h Lmeae 056 )+ snZg o2

Since u is actually independent of ¢, we can ignore the second term when we apply L?
to the wavefunction u and note that

1 1
0 (sin GQ COoS 0) = — ﬁ (— sin? (9) = —2cosf

sin 6 06 a0

Thus )
L? u(r,0, ¢) = 2h* Ar cos 0 exp(—br?) = 2h*u(r, 0, ¢)

so that u(r, 0, ¢) is an eigenfunction of L2 with eigenvalue 2h%. Writing 2h% = (((+1)h?,
we see that the orbital angular momentum quantum number ¢ = 1.

We have already noted that u(j, 0, ¢) is independent of ¢ which tells us immediately

that it is an eigenfunction of L, belonging to eigenvalue m = 0. Explicitly, we note
that in spherical polar coordinates,

A 0

L,=—ih—

i 9

so that izu(r, 0,¢) = 0. A short cut to the answer is to note that u(r, 6, ¢) x Yi0(0, ¢)
and hence { =1 and m = 0.

(b) Sketch the wavefunction, e.g. with a contour plot in the =0 plane.

The function is zero at the origin. It has positive and negative lobes pointing aong
the z-axis, decaying away to zero far from the origin. In fact, it looks a bit like a
hydrogenic p-orbital (I = 1), though it isn’t quite the same.



Positive lobe +

Zero far =0 >

Negative lobe

(c) Can you identify the Hamiltonian for which this is an energy eigenstate ¢

The given function is an eigenfunction of the 3-dimensional isotropic simple harmonic
oscillator with b related to the mass m and angular frequency w through b = mw/2h.
It is the state with n, =n, =0 and n, = 1.

note: the 2007 version asked you to identify a physical system - this is rather challeng-
ing, an “atom trap” can capture single particles, which won a 1997 Nobel Prize for
Chu, Cohen-Tannoudji and Phillips, and another in 2001 for Wieman, Ketterle and
Cornell who trapped millons of Rubidium atoms in the same quantum state, forming
a Bose Condensate. Optical tweezers are a method by which a particle can be trapped
in a laser cavity. If you don’t know about this stuff, look it up.

More esoterically (see 2007 exam), a neutrino trapped in the gravitational field of a
constant density planet is a possibility!



