Solutions to Tutorial Sheet 1: Mainly revision

1. Given the expansion of an arbitrary wavefunction or state vector as a linear superposition of eigenstates of the operator \hat{A}

$$
\Psi(\underline{r}, t)=\sum_{i} c_{i}(t) u_{i}(\underline{r}) \quad \text { or } \quad|\Psi, t\rangle=\sum_{i} c_{i}(t)\left|u_{i}\right\rangle
$$

use the orthonormality properties of the eigenstates to prove that

$$
c_{i}(t)=\int u_{i}^{*}(\underline{r}) \Psi(\underline{r}, t) \mathrm{d}^{3} r \quad \text { or } \quad c_{i}(t)=\left\langle u_{i} \mid \Psi, t\right\rangle
$$

Work through the proof in both wavefunction and Dirac notations.

Firstly in wavefunction notation the expansion is:

$$
\Psi(\underline{r}, t)=\sum_{i} c_{i}(t) u_{i}(\underline{r})
$$

Multiply both sides by $u_{j}^{*}(\underline{r})$ and integrate over all space:

$$
\int u_{j}^{*}(\underline{r}) \Psi(\underline{r}, t) \mathrm{d}^{3} r=\sum_{i} c_{i}(t) \int u_{j}^{*}(\underline{r}) u_{i}(\underline{r}) \mathrm{d}^{3} r=\sum_{i} c_{i}(t) \delta_{j i}=c_{j}(t)
$$

where we have used the orthonormality property of the eigenfunctions:

$$
\int u_{j}^{*}(\underline{r}) u_{i}(\underline{r}) \mathrm{d}^{3} r=\delta_{j i}
$$

and the so-called sifting property of the Kronecker delta:

$$
\sum_{i} c_{i}(t) \delta_{j i}=c_{j}(t)
$$

Relabelling the free index $j \rightarrow i$ gives the desired result:

$$
c_{i}(t)=\int u_{i}^{*}(\underline{r}) \Psi(\underline{r}, t) \mathrm{d}^{3} r
$$

In Dirac notation we start from the expansion:

$$
|\Psi, t\rangle=\sum_{i} c_{i}(t)\left|u_{i}\right\rangle
$$

and take the scalar product of both sides with the bra vector $\left\langle u_{j}\right|$ to give

$$
\left\langle u_{j} \mid \Psi, t\right\rangle=\sum_{i} c_{i}(t)\left\langle u_{j} \mid u_{i}\right\rangle=\sum_{i} c_{i}(t) \delta_{j i}=c_{j}(t)
$$

using the orthonormality property $\left\langle u_{j} \mid u_{i}\right\rangle=\delta_{j i}$ as before.

The state $|\Psi, t\rangle$ is said to be normalised if $\langle\Psi, t \mid \Psi, t\rangle=1$. Show that this implies that

$$
\sum_{i}\left|c_{i}(t)\right|^{2}=1
$$

Hint: use the expansion $|\Psi, t\rangle=\sum_{i} c_{i}(t)\left|u_{i}\right\rangle$ and the corresponding conjugate expansion $\langle\Psi, t|=\sum_{j} c_{j}^{*}(t)\left\langle u_{j}\right|$.

Substituting for $\langle\Psi, t|$ and $|\Psi, t\rangle$ in $\langle\Psi, t \mid \Psi, t\rangle$ we find

$$
\langle\Psi, t \mid \Psi, t\rangle=\sum_{j} \sum_{i} c_{j}^{*}(t) c_{i}(t)\left\langle u_{j} \mid u_{i}\right\rangle=\sum_{j} \sum_{i} c_{j}^{*}(t) c_{i}(t) \delta_{j i}=\sum_{i}\left|c_{i}(t)\right|^{2}
$$

where we have used the orthonormality of the eigenbasis $\left\langle u_{j} \mid u_{i}\right\rangle=\delta_{j i}$ and the sifting property of the Kronecker delta. Thus we have the result quoted in Lecture 1:

$$
\sum_{i}\left|c_{i}(t)\right|^{2}=1
$$

If the expectation value $\langle\hat{A}\rangle_{t}=\langle\Psi, t| \hat{A}|\Psi, t\rangle$, show by making use of the same expansions that

$$
\langle\hat{A}\rangle_{t}=\sum_{i}\left|\left\langle u_{i} \mid \Psi, t\right\rangle\right|^{2} A_{i}
$$

and give the physical interpretation of this result.
The suggested expansion of the state vector is, in Dirac notation,

$$
|\Psi, t\rangle=\sum_{i} c_{i}(t)\left|u_{i}\right\rangle \quad \text { where } \quad c_{i}(t)=\left\langle u_{i} \mid \Psi, t\right\rangle
$$

and, correspondingly,

$$
\langle\Psi, t|=\sum_{j} c_{j}^{*}(t)\left\langle u_{j}\right|
$$

Substituting for $|\Psi, t\rangle$ and $\langle\Psi, t|$ in the expression for the expectation value gives

$$
\langle\hat{A}\rangle_{t}=\sum_{j} \sum_{i} c_{j}^{*}(t) c_{i}(t)\left\langle u_{j}\right| \hat{A}\left|u_{i}\right\rangle=\sum_{j} \sum_{i} c_{j}^{*}(t) c_{i}(t) A_{i}\left\langle u_{j} \mid u_{i}\right\rangle
$$

where we have used the eigenvalue equation for \hat{A} :

$$
\hat{A}\left|u_{i}\right\rangle=A_{i}\left|u_{i}\right\rangle
$$

We again use the orthonormality of the eigenbasis $\left\langle u_{j} \mid u_{i}\right\rangle=\delta_{j i}$ to write

$$
\langle\hat{A}\rangle_{t}=\sum_{j} \sum_{i} c_{j}^{*}(t) c_{i}(t) A_{i} \delta_{j i}=\sum_{i}\left|c_{i}(t)\right|^{2} A_{i}=\sum_{i}\left|\left\langle u_{i} \mid \Psi, t\right\rangle\right|^{2} A_{i}
$$

which is the desired result. As discussed in lectures, the interpretation is that $\left|c_{i}(t)\right|^{2}$ is the probability of getting the result A_{i} in a measurement of the observable \mathcal{A}, and the mean value of a set of repeated measurements of \mathcal{A} is just a sum over the possible values weighted by the probabilities of obtaining them.
2. The observables \mathcal{A} and \mathcal{B} are represented by operators \hat{A} and \hat{B} with eigenvalues $\left\{A_{i}\right\}$, $\left\{B_{i}\right\}$ and eigenstates $\left\{\left|u_{i}\right\rangle\right\},\left\{\left|v_{i}\right\rangle\right\}$ respectively, such that

$$
\begin{aligned}
& \left|v_{1}\right\rangle=\left\{\sqrt{3}\left|u_{1}\right\rangle+\left|u_{2}\right\rangle\right\} / 2 \\
& \left|v_{2}\right\rangle=\left\{\left|u_{1}\right\rangle-\sqrt{3}\left|u_{2}\right\rangle\right\} / 2 \\
& \left|v_{n}\right\rangle=\left|u_{n}\right\rangle, \quad n \geq 3
\end{aligned}
$$

Show that if $\left\{\left|u_{i}\right\rangle\right\}$ is an orthonormal basis then so is $\left\{\left|v_{i}\right\rangle\right\}$.
This problem is designed to test your understanding of measurement and wavefunction collapse.

Orthonormality of the two bases means that

$$
\left\langle u_{i} \mid u_{j}\right\rangle=\delta_{i j} \quad \text { and } \quad\left\langle v_{i} \mid v_{j}\right\rangle=\delta_{i j}
$$

Given the expressions for $\left|v_{1}\right\rangle$ and $\left|v_{2}\right\rangle$ in terms of $\left|u_{1}\right\rangle$ and $\left|u_{2}\right\rangle$ we see that

$$
\begin{aligned}
\left\langle v_{1} \mid v_{1}\right\rangle & =\frac{1}{4}\left(\sqrt{3}\left\langle u_{1}\right|+\left\langle u_{2}\right|\right)\left(\sqrt{3}\left|u_{1}\right\rangle+\left|u_{2}\right\rangle\right) \\
& =\frac{1}{4}\left(3\left\langle u_{1} \mid u_{1}\right\rangle+\sqrt{3}\left\langle u_{1} \mid u_{2}\right\rangle+\sqrt{3}\left\langle u_{2} \mid u_{i}\right\rangle+\left\langle u_{2} \mid u_{2}\right\rangle\right)=\frac{1}{4}(3+0+0+1)=1
\end{aligned}
$$

as it should. Similarly,

$$
\begin{aligned}
\left\langle v_{1} \mid v_{2}\right\rangle & =\frac{1}{4}\left(\sqrt{3}\left\langle u_{1}\right|+\left\langle u_{2}\right|\right)\left(\left|u_{1}\right\rangle-\sqrt{3}\left|u_{2}\right\rangle\right) \\
& =\frac{1}{4}\left(\sqrt{3}\left\langle u_{1} \mid u_{1}\right\rangle-3\left\langle u_{1} \mid u_{2}\right\rangle+\left\langle u_{2} \mid u_{i}\right\rangle-\sqrt{3}\left\langle u_{2} \mid u_{2}\right\rangle\right)=\frac{1}{4}(\sqrt{3}-0+0-\sqrt{3})=0
\end{aligned}
$$

By the same methods you can show that $\left\langle v_{2} \mid v_{2}\right\rangle=1$ and $\left\langle v_{2} \mid v_{1}\right\rangle=0$ so that the relations between $\left|v_{1}\right\rangle,\left|v_{2}\right\rangle$ and $\left|u_{1}\right\rangle,\left|u_{2}\right\rangle$ are consistent with both bases being orthonormal (for $n \geq 3$ it is trivial).
A certain system is subjected to three successive measurements:
(1) a measurement of \mathcal{A} followed by
(2) a measurement of \mathcal{B} followed by
(3) another measurement of \mathcal{A}

Show that if measurement (1) yields any of the values A_{3}, A_{4}, \ldots then (3) gives the same result but that if (1) yields the value A_{1} there is a probability of $\frac{5}{8}$ that (3) will yield A_{1} and a probability of $\frac{3}{8}$ that it will yield A_{2}. What may be said about the compatibility of \mathcal{A} and \mathcal{B} ?
If measurement (1) yields any of the eigenvalues A_{3}, A_{4}, \ldots then the state of the system immediately afterwards is the corresponding eigenstate $\left|u_{3}\right\rangle,\left|u_{4}\right\rangle, \ldots$ of the operator \hat{A}. But $\left|u_{3}\right\rangle=\left|v_{3}\right\rangle$ etc. and so measurement (2) is made with the system in an eigenstate of \hat{B}, guaranteeing the outcome of (2) and leaving the state of the system unchanged, since for $n \geq 3,\left|u_{n}\right\rangle=\left|v_{n}\right\rangle$. Thus measurement (3) is certain to yield the same result as (1).

If measurement (1) yields the result A_{1}, however, the system is forced into the state $\left|u_{1}\right\rangle$ so that measurement (2), of the observable \mathcal{B}, is made with the system in the state $\left|u_{1}\right\rangle$. Inverting the given equations shows that

$$
\begin{aligned}
& \left|u_{1}\right\rangle=\left\{\sqrt{3}\left|v_{1}\right\rangle+\left|v_{2}\right\rangle\right\} / 2 \\
& \left|u_{2}\right\rangle=\left\{\left|v_{1}\right\rangle-\sqrt{3}\left|v_{2}\right\rangle\right\} / 2
\end{aligned}
$$

The first of these is just the expansion of $\left|u_{1}\right\rangle$ in the eigenbasis of \hat{B} and the coefficients are the probability amplitudes from which we can compute the probabilities of getting the various possible values of \mathcal{B} :

$$
\begin{aligned}
& \text { prob of } B_{1}=\left|\frac{\sqrt{3}}{2}\right|^{2}=\frac{3}{4} \\
& \text { prob of } B_{2}=\left|\frac{1}{2}\right|^{2}=\frac{1}{4}
\end{aligned}
$$

Suppose that we get the result B_{1}. The wavefunction has collapsed onto the corresponding eigenstate of \hat{B}, that is $\left|v_{1}\right\rangle$. But we know that

$$
\left|v_{1}\right\rangle=\left\{\sqrt{3}\left|u_{1}\right\rangle+\left|u_{2}\right\rangle\right\} / 2
$$

which is the expansion of $\left|v_{1}\right\rangle$ in the eigenbasis of \hat{A}, enabling us to compute the probabilities of getting the various possible values of \mathcal{A} :

$$
\begin{aligned}
& \text { prob of } A_{1}=\left|\frac{\sqrt{3}}{2}\right|^{2}=\frac{3}{4} \\
& \text { prob of } A_{2}=\left|\frac{1}{2}\right|^{2}=\frac{1}{4}
\end{aligned}
$$

On the other hand, if we get the result B_{2} from measurement (2), the system is left in the state $\left|v_{2}\right\rangle$ and

$$
\left|v_{2}\right\rangle=\left\{\left|u_{1}\right\rangle-\sqrt{3}\left|u_{2}\right\rangle\right\} / 2
$$

so that in this case when we make measurement (3)

$$
\begin{aligned}
\text { prob of } A_{1} & =\left|\frac{1}{2}\right|^{2}=\frac{1}{4} \\
\text { prob of } A_{2} & =\left|\frac{\sqrt{3}}{2}\right|^{2}=\frac{3}{4}
\end{aligned}
$$

Thus the probability of getting the result A_{1} in measurement (3), irrespective of the outcome of measurement (2), is given by
(prob that (2) gives $\left.B_{1}\right) \times\left(\right.$ prob that (3) gives A_{1} given outcome B_{1} in (2)) $+$
(prob that (2) gives $\left.B_{2}\right) \times\left(\right.$ prob that (3) gives A_{1} given outcome B_{2} in (2))

$$
=\frac{3}{4} \times \frac{3}{4}+\frac{1}{4} \times \frac{1}{4}=\frac{5}{8}
$$

Since (3) can only give A_{1} or A_{2}, the probability of getting A_{2} is $3 / 8$.
We can represent the situation by a probability tree:
Measurement (1):

Measurement (2):

Measurement (3):

\hat{A} and \hat{B} are not compatable operators, even though many of their eigenstates are the same.
3. The normalised energy eigenfunction of the ground state of the hydrogen atom ($Z=1$) is

$$
u_{100}(\underline{r})=R_{10}(r) Y_{00}(\theta, \phi)=C \exp \left(-r / a_{0}\right)
$$

where a_{0} is the Bohr radius and C is a normalisation constant. For this state
(a) Calculate the normalisation constant, C, by noting the useful integral

$$
\int_{0}^{\infty} \exp (-b r) r^{n} \mathrm{~d} r=n!/ b^{n+1}, \quad n>-1
$$

Alternatively, you can use the computer algebra program Maple if you know how to!

The normalisation condition is as usual

$$
\int u_{100}^{*}(\underline{r}) u_{100}(\underline{r}) \mathrm{d}^{3} r=1
$$

which in spherical polar coordinates gives

$$
\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \int_{r=0}^{\infty}|C|^{2} \exp \left(-2 r / a_{0}\right) r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi=1
$$

The ϕ integration gives 2π, whilst the θ integration gives 2 so that

$$
4 \pi|C|^{2} \int_{0}^{\infty} \exp \left(-2 r / a_{0}\right) r^{2} \mathrm{~d} r=1
$$

We use the given integration formula and we find that

$$
\int \exp \left(-2 r / a_{0}\right) r^{2} \mathrm{~d} r=2!\left(\frac{a_{0}}{2}\right)^{3}=\frac{a_{0}^{3}}{4}
$$

Making the usual convention that the normalisation constant C is real and positive gives

$$
C=\frac{1}{\sqrt{\pi a_{0}^{3}}} ; \quad u_{100}(\underline{r})=\left(\pi a_{0}^{3}\right)^{-1 / 2} \exp \left(-r / a_{0}\right)
$$

Maple can be used to evaluate the required integral (and related integrals which occur in the subsequent parts of the question).

```
> assume(a>0);
```

> int (exp (-2*r/a)*r*r,r=0..infinity);
(b) Determine the radial distribution function, $D_{10}(r) \equiv r^{2}\left|R_{10}(r)\right|^{2}$, and sketch its behaviour; determine the most probable value of the radial coordinate, r, and the probability that the electron is within a sphere of radius a_{0}; recall that $Y_{00}(\theta, \phi)=$ $1 / \sqrt{4 \pi}$; again, you can use Maple to help you if you know how;

Recall that

$$
u_{n \ell m}(\underline{r})=R_{n \ell}(r) Y_{\ell m}(\theta, \phi)
$$

so that

$$
u_{100}(\underline{r})=R_{10}(r) Y_{00}(\theta, \phi)=\frac{1}{\sqrt{4 \pi}} R_{10}(r)
$$

Using the result for $u_{100}(\underline{r})$ from the previous part of the question,

$$
D_{10}(r) \equiv r^{2}\left|R_{10}(r)\right|^{2}=\frac{4 r^{2}}{a_{0}^{3}} \exp \left(-2 r / a_{0}\right)
$$

To plot the radial distribution using Maple, use the following Maple command:

```
> plot(4*r*r*exp(-2*r),r=0..3);
```

This will produce a graph with a_{0} scaled to 1 .
$D_{10}(r) \mathrm{d} r$ is the probability of finding the electron between r and $r+\mathrm{d} r$, so that the most probable value of r corresponds to the maximum of the distribution, which may be found by differentiation with respect to r;

$$
\frac{d D_{10}}{d r}=\frac{8 r}{a_{0}^{3}} \exp \left(-2 r / a_{0}\right)-\frac{8 r^{2}}{a_{0}^{4}} \exp \left(-2 r / a_{0}\right)=\frac{8 r}{a_{0}^{4}}\left(a_{0}-r\right) \exp \left(-2 r / a_{0}\right)
$$

Thus the derivative vanishes at the origin and at $r=a_{0}$, the latter corresponding to the maximum of D_{10}.
The following piece of Maple finds the points at which the derivative vanishes:

```
> assume(a>0);
> d:=4*r*r*exp(-2*r/a)/a**3;
> dprime:=diff(d,r);
> solve({dprime=0},{r});
```

The probability that the electron is within a sphere of radius a_{0} is given by integrating the radial probability distribution from $r=0$ to $r=a_{0}$:

$$
\int_{0}^{a_{0}} D_{10}(r) \mathrm{d} r=\frac{4}{a_{0}^{3}} \int_{0}^{a_{0}} r^{2} \exp \left(-2 r / a_{0}\right) \mathrm{d} r
$$

Unfortunately, the given integral doesn't help because here the upper limit is a_{0} and not ∞. However, integrating by parts or using Maple yields the result

$$
\text { probability }=1-5 e^{-2}=0.32
$$

The Maple is
$>\mathrm{d}:=4 * r * r * \exp (-2 * r / a) / \mathrm{a} * * 3$;
> prob:=int(d,r=0..a);
> evalf(prob);
(c) Calculate the expectation value of r;

$$
\langle r\rangle=\int u_{100}^{*}(\underline{r}) r u_{100}(\underline{r}) \mathrm{d}^{3} r=\frac{4 \pi}{\pi a_{0}^{3}} \int_{0}^{\infty} r^{3} \exp \left(-2 r / a_{0}\right) \mathrm{d} r
$$

Using the given integral, or Maple,

$$
\langle r\rangle=\frac{4}{a_{0}^{3}} 3!\left(\frac{a_{0}}{2}\right)^{4}=\frac{3}{2} a_{0}
$$

So, the mean value of r is 50% larger than the most probable value. This is due to the long "tail" of the wavefunction.
(d) Calculate the expectation value of the potential energy, $V(r)$;

$$
\begin{aligned}
\langle V(r)\rangle & =-\frac{e^{2}}{4 \pi \epsilon_{0}} \int u_{100}^{*}(\underline{r}) \frac{1}{r} u_{100}(\underline{r}) \mathrm{d}^{3} r \\
& =-\frac{e^{2}}{4 \pi \epsilon_{0}} 4 \pi \frac{1}{\pi a_{0}^{3}} \int_{0}^{\infty} r \exp \left(-2 r / a_{0}\right) \mathrm{d} r \\
& =-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{4}{a_{0}^{3}}\left(\frac{a_{0}}{2}\right)^{2} \quad \text { from the given integral } \\
& =-\frac{e^{2}}{4 \pi \epsilon_{0} a_{0}}
\end{aligned}
$$

(e) Calculate the uncertainty, Δr, in r.

The uncertainty is defined by

$$
\Delta r \equiv \sqrt{\left\langle r^{2}\right\rangle-\langle r\rangle^{2}}
$$

so we need to compute $\left\langle r^{2}\right\rangle$:

$$
\begin{aligned}
\left\langle r^{2}\right\rangle & =\int u_{100}^{*}(\underline{r}) r^{2} u_{100}(\underline{r}) \mathrm{d}^{3} r \\
& =4 \pi \frac{1}{\pi a_{0}^{3}} \int_{0}^{\infty} r^{4} \exp \left(-2 r / a_{0}\right) \mathrm{d} r \\
& =\frac{4}{a_{0}^{3}} 4!\left(\frac{a_{0}}{2}\right)^{5} \\
& =3 a_{0}^{2}
\end{aligned}
$$

Thus

$$
\Delta r=\sqrt{3 a_{0}^{2}-\left(1.5 a_{0}\right)^{2}}=\frac{\sqrt{3}}{2} \approx 0.87 a_{0}
$$

4. At $t=0$, a particle has a wavefunction $\psi(x, y, z)=A z \exp \left[-b\left(x^{2}+y^{2}+z^{2}\right)\right]$, where A and b are constants.
(a) Show that this wavefunction is an eigenfunction of \hat{L}^{2} and of \hat{L}_{z} and find the corresponding eigenvalues. Hint: express ψ in spherical polars and use the spherical polar expressions for \hat{L}^{2} and \hat{L}_{z}.

$$
\begin{aligned}
\hat{L}^{2} & =-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \\
\hat{L}_{z} & =-i \hbar \frac{\partial}{\partial \phi}
\end{aligned}
$$

First note that $x^{2}+y^{2}+z^{2}=r^{2}$ and $z=r \cos \theta$, so that

$$
u(r, \theta, \phi)=A r \cos \theta \exp \left(-b r^{2}\right)
$$

In spherical polars,

$$
\hat{L}^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]
$$

Since u is actually independent of ϕ, we can ignore the second term when we apply \hat{L}^{2} to the wavefunction u and note that

$$
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \cos \theta\right)=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(-\sin ^{2} \theta\right)=-2 \cos \theta
$$

Thus

$$
\hat{L}^{2} u(r, \theta, \phi)=2 \hbar^{2} A r \cos \theta \exp \left(-b r^{2}\right)=2 \hbar^{2} u(r, \theta, \phi)
$$

so that $u(r, \theta, \phi)$ is an eigenfunction of \hat{L}^{2} with eigenvalue $2 \hbar^{2}$. Writing $2 \hbar^{2}=\ell(\ell+1) \hbar^{2}$, we see that the orbital angular momentum quantum number $\ell=1$.
We have already noted that $u(r, \theta, \phi)$ is independent of ϕ which tells us immediately that it is an eigenfunction of \hat{L}_{z} belonging to eigenvalue $m=0$. Explicitly, we note that in spherical polar coordinates,

$$
\hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi}
$$

so that $\hat{L}_{z} u(r, \theta, \phi)=0$. A short cut to the answer is to note that $u(r, \theta, \phi) \propto Y_{10}(\theta, \phi)$ and hence $\ell=1$ and $m=0$.
(b) Sketch the wavefunction, e.g. with a contour plot in the $x=0$ plane.

The function is zero at the origin. It has positive and negative lobes pointing aong the z-axis, decaying away to zero far from the origin. In fact, it looks a bit like a hydrogenic p-orbital $(l=1)$, though it isn't quite the same.

(c) Can you identify the Hamiltonian for which this is an energy eigenstate?

The given function is an eigenfunction of the 3-dimensional isotropic simple harmonic oscillator with b related to the mass m and angular frequency ω through $b=m \omega / 2 \hbar$. It is the state with $n_{x}=n_{y}=0$ and $n_{z}=1$.
note: the 2007 version asked you to identify a physical system - this is rather challenging, an "atom trap" can capture single particles, which won a 1997 Nobel Prize for Chu, Cohen-Tannoudji and Phillips, and another in 2001 for Wieman, Ketterle and Cornell who trapped millons of Rubidium atoms in the same quantum state, forming a Bose Condensate. Optical tweezers are a method by which a particle can be trapped in a laser cavity. If you don't know about this stuff, look it up.
More esoterically (see 2007 exam), a neutrino trapped in the gravitational field of a constant density planet is a possibility!

