
Quantum Physics 2011/12

Solutions to Tutorial Sheet 2: Perturbations

A note about notation

In perturbation theory we need distinguish between different unperturbed systems (hydro-
gen, square well, SHO) perturbed and unperturbed systems, order of perturbation theory
and the quantum numbers defining a particular state.

There is no unique notation in quantum mechanics: different authors use different symbols
for the same thing. The best you can do is be sure that you properly define your notation
in your answers, and understand what it means.

1. A quantum dot is a self assembled nanoparticle in which a single electron state can
be confined. A model for such an object is a particle moving in one dimension in the
potential

V (x) = ∞, |x| > a, V (x) = V0 cos(πx/2a), |x| ≤ a

Identify an appropriate unperturbed system and perturbation term. The potential is an
infinite square well with a bump at the bottom. The appropriate unperturbed system
is the infinite square well without the bump. The energy scale of the bump is set by
V0, so perturbation theory will be valid provided this is less than the energy difference
between square-well states, i.e.

V0 <<
h̄2π2

8ma2
(2n + 1)

For sufficiently large n, this will always be true. But we’re only asked about n=1 and
n=2.

Calculate the energies of the two lowest states to first order in perturbation theory.

We write
Ĥ = Ĥ0 + ∆V̂

where Ĥ0 is the Hamiltonian of the 1-dimensional infinite
square well:

Ĥ0 =
p̂2

2m
+ U(x)

and

U(x) =

{
∞ |x| > a
0 |x| ≤ a

a−a

U(x)

with known exact solution: the eigenvalues of Ĥ0 are given by

E(0)
n =

h̄2π2n2

8ma2
, n = 1, 2, 3, · · ·



and the corresponding eigenfunctions are

un(x) =
1√
a

{
cos
sin

} (
nπx

2a

) {
n odd
n even

The perturbation is

∆V̂ = V0 cos
(

πx

2a

)
|x| ≤ a

and to first order in perturbation theory, the energy shifts are
given by

a−a

U(x)+H’(x)

∆En = 〈un|∆V̂ |un〉 =
∫ a

−a
u∗n(x)∆V̂ un(x) dx

For the ground state:

∆E1 =
V0

a

∫ a

−a
cos

(
πx

2a

)
cos

(
πx

2a

)
cos

(
πx

2a

)
dx =

V0

a

∫ a

−a
cos3

(
πx

2a

)
dx

=
2V0

π

∫ +π/2

−π/2
cos3 θ dθ where θ ≡ πx

2a

=
2V0

π

∫ +1

−1

(
1− sin2 θ

)
d(sin θ) using the identity cos2 θ ≡ 1− sin2 θ

=
2V0

π

[
sin θ − 1

3
sin3 θ

]+1

−1

Thus

∆E1 =
8V0

3π

Similarly for the first excited state (n = 2):

∆E2 =
V0

a

∫ a

−a
sin

(
πx

a

)
cos

(
πx

2a

)
sin

(
πx

a

)
dx

=
2V0

π

∫ +π/2

−π/2
sin2 2θ cos θ dθ where θ ≡ πx

2a

=
8V0

π

∫ +π/2

−π/2
sin2 θ cos3 θ dθ using the identity sin 2θ ≡ 2 sin θ cos θ

=
8V0

π

∫ +1

−1
sin2 θ

(
1− sin2 θ

)
d(sin θ)

=
8V0

π

[
1

3
sin3 θ − 1

5
sin5 θ

]+1

−1

Thus

∆E2 =
32V0

15π

What is the sign of V0?



Since the electron is attracted to the atoms comprising the dot, it is likely to be more
strongly bound at the centre. Hence V0 will be negative.

State two ways in which the colour of a material containing dots can be shifted towards
the red.

To vary the colour, we need to change the difference between energy levels. The sim-
plest way to do this is to use a larger dot, increasing a in the unperturbed energies
and hence reducing (redshifting) their energy. Alternately, we just saw that the per-
turbation lowered the ground state by more than the excited state: thus a smaller V0

(i.e. a material which less strongly bound the electron) would give a red shift.

2. A particle moves in one dimension in the potential

V (x) = ∞, |x| > a, V (x) = V0 sin(πx/a), |x| ≤ a

• show that the first order energy shift is zero;

Just as in the previous question, we write

Ĥ = Ĥ0 + ∆V̂

where Ĥ0 is the Hamiltonian of the 1-dimensional infinite square well.

The first order formula for the energy shift is then

∆En = 〈n|∆V̂ |n〉 =
∫ a

−a
u∗n(x)∆V̂ un(x) dx

Thus

∆En =
V0

a

∫ a

−a

{
cos
sin

} (
nπx

2a

)
· sin

(
πx

a

)
·

{
cos
sin

} (
nπx

2a

)
dx

{
n odd
n even

We observe that the integrand is always an odd function of x regardless of the value
of n, and hence the integral from −a to a must vanish. Hence

∆En ≡ 0

• *obtain an expression for the second order correction to the energy of the ground
state.

At second order, the correction to the ground-state energy is given by

∆E
(2)
1 =

∑

m6=1

|〈m|∆V̂ |1〉|2(
E

(0)
1 − E

(0)
m

)

For m odd:

〈m|∆V̂ |1〉 =
V0

a

∫ a

−a
cos

(
mπx

2a

)
sin

(
πx

a

)
cos

(
πx

2a

)
dx ≡ 0

because the integrand is an odd function of x.



For m even, no such argument applies and we have to work hard to evaluate the
required integral!

〈m|∆V̂ |1〉 =
V0

a

∫ a

−a
sin

(
mπx

2a

)
sin

(
πx

a

)
cos

(
πx

2a

)
dx

=
2V0

π

∫ +π/2

−π/2
sin mθ sin 2θ cos θ dθ where θ ≡ πx

2a

=
4V0

π

∫ π/2

0
sin mθ sin 2θ cos θ dθ

We now use the trigonometric identities (from cos A cos B etc.) :

sin mθ sin 2θ ≡ 1

2
[cos(m− 2)θ − cos(m + 2)θ]

cos(m− 2)θ cos θ ≡ 1

2
[cos(m− 1)θ + cos(m− 3)θ]

cos(m + 2)θ cos θ ≡ 1

2
[cos(m + 3)θ + cos(m + 1)θ]

to write

〈m|∆V̂ |1〉 =
V0

π

∫ π/2

0
[cos(m− 1)θ + cos(m− 3)θ − cos(m + 3)θ − cos(m + 1)θ] dθ

=
V0

π

[
sin(m− 1)π/2

(m− 1)
+

sin(m− 3)π/2

(m− 3)
− sin(m + 3)π/2

(m + 3)
− sin(m + 1)π/2

(m + 1)

]

Recall that m is even and ≥ 2 so that

sin(m− 1)π/2 = sin(m + 3)π/2 = (−1)
m
2

+1

sin(m− 3)π/2 = sin(m + 1)π/2 = (−1)
m
2

Thus

〈m|∆V̂ |1〉 = (−1)m/2 V0

π

[
− 1

(m− 1)
+

1

(m− 3)
+

1

(m + 3)
− 1

(m + 1)

]

Putting everything over a common denominator yields

〈m|∆V̂ |1〉 = (−1)m/2 V0

π

16m

(m2 − 9)(m2 − 1)

Thus

〈2|∆V̂ |1〉 =
32V0

15π
; 〈4|∆V̂ |1〉 =

64V0

105π
etc

Now for the unperturbed Hamiltonian

(E1 − E2) =
π2h̄2

8ma2
(1− 4) = −3π2h̄2

8ma2

and so we find that the second order energy shift is an infinite sum of the even m
terms, changing the index so that n = 2m ...



∆E
(2)
1 =

∑
n

(
V0

π

n

2(n2 − 36)(n2 − 4)

)2

.
8ma2

(1− 4n2)π2h̄2

Noting that this ultimately scales as n−9, we can assume that the sum converges, and
we already saw that the first order term is about four times the second.

∆E
(2)
1 = −

(
32V0

15π

)2 8ma2

3π2h̄2 + . . .

3. The 1-d anharmonic oscillator: a particle of mass m is described by the Hamiltonian

Ĥ =
p̂2

2m
+ 1

2
mω2 x̂2 + γx̂4

• Assuming that γ is small, use first-order perturbation theory to calculate the
ground state energy;

• *show more generally that the energy eigenvalues are approximately

En ' (n + 1
2
)h̄ω + 3γ

(
h̄

2mω

)2

(2n2 + 2n + 1)

Hint: to evaluate matrix elements of powers of x̂, write x̂ in terms of the harmonic
oscillator raising and lowering operators â and â†. Recall that the raising and lowering
operators are defined by

â ≡
√

mω

2h̄
x̂ +

i√
2mωh̄

p̂ and â† ≡
√

mω

2h̄
x̂− i√

2mωh̄
p̂

with the properties that

â|n〉 =
√

n |n− 1〉 and â†|n〉 =
√

n + 1 |n + 1〉

Since the unperturbed energy eigenstates are non-degenerate, we can use the standard
result to calculate the first order energy level shifts:

∆En = 〈n|∆V̂ |n〉 = γ〈n|x̂4|n〉

The integral associated with the ground state is then

γ

√
mω

πh̄

∫
x4 exp (−mωx2/h̄) dx

Which is deeply unpleasant. You can look it up:

∫ ∞

−∞
x2n exp (−ax2) dx =

1

2n+1

√
π

a2n+1

2n−1∏

j=1

(2j − 1)



so

γ

√
mω

πh̄

∫
x4 exp (−mωx2/h̄) dx = 3γ

(
h̄

2mω

)2

But to do it yourself, its best to use raising and lowering operators.

The unperturbed energy eigenstates satisfy

Ĥ0|n〉 = En|n〉 with En =
(
n + 1

2

)
h̄ω, n = 0, 1, 2, . . .

We can write x̂ in terms of â and â†:

x̂ =

√
h̄

2mω

(
â + â†

)

Thus

∆En = γ

(
h̄

2mω

)2

〈n|
(
â + â†

)4 |n〉

Expanding the bracket
(
â + â†

)4
looks pretty awful until you realise that, from the

raising and lowering properties and the orthonormality of the energy eigenstates, only
terms which contain an equal number of raising and lowering operators will give a
non-zero contribution to the diagonal matrix element 〈n|∆V̂ |n〉. Thus

∆En = γ

(
h̄

2mω

)2

〈n|
(
â2â†2 + ââ†ââ† + ââ†â†â + â†âââ† + â†ââ†â + â†2â2

)
|n〉

For the ground state, n = 0, this simplifies even further because â|0〉 = 0, so the third,
fifth and sixth terms all give zero. Evaluating the remaining three terms,

â2â†2|0〉 = â2â†|1〉 =
√

2 â2|2〉 =
√

2
√

2 â|1〉 = 2|0〉
ââ†ââ†|0〉 = ââ†â|1〉 = ââ†|0〉 = â|1〉 = |0〉
â†âââ†|0〉 = â†ââ|1〉 = â†â|0〉 = 0

Thus

∆E0 = 3γ

(
h̄

2mω

)2

〈0|0〉 = 3γ

(
h̄

2mω

)2

For the general case, we have to work a little harder;

â2â†2|n〉 =
√

n + 1 â2â†|n + 1〉 =
√

(n + 1)(n + 2) â2|n + 2〉
=

√
n + 1 (n + 2)â|n + 1〉 = (n + 1)(n + 2)|n〉

ââ†ââ†|n〉 =
√

n + 1 ââ†â|n + 1〉 = (n + 1) ââ†|n〉 = (n + 1)
√

n + 1 â|n + 1〉
= (n + 1)2|n〉

â†âââ†|n〉 =
√

n + 1 â†ââ|n + 1〉 = (n + 1)â†â|n〉 = (n + 1)
√

n â†|n〉
= n(n + 1)|n〉



but we also need to consider the previously neglected terms:

ââ†â†â|n〉 =
√

n ââ†â†|n− 1〉 = nââ†|n〉 = n
√

n + 1 â|n + 1〉
= n(n + 1)|n〉

â†ââ†â|n〉 =
√

n â†ââ†|n− 1〉 = nâ†â|n〉 = n
√

n â†|n− 1〉
= n2|n〉

â†2â2|n〉 =
√

n â†2â|n− 1〉 =
√

n(n− 1) â†2|n− 2〉 = (n− 1)
√

n â†|n− 1〉
= n(n− 1)|n〉

Collecting up terms:

(n + 1)(n + 2) + (n + 1)2 + 2n(n + 1) + n2 + n(n− 1) = 6n2 + 6n + 3

so that the shift in energy to first order is

∆En = 3γ

(
h̄

2mω

)2 (
2n2 + 2n + 1

)
〈n|n〉 = 3γ

(
h̄

2mω

)2 (
2n2 + 2n + 1

)

As a check, putting n = 0 reproduces the ground-state shift we obtained above.

4. A 1-dimensional harmonic oscillator of mass m carries an electric charge, q. A weak,
uniform, static electric field of magnitude E is applied in the x-direction. Show that,
to first order in perturbation theory, the oscillator energy levels are unchanged, and
calculate the second-order shift. Can you show that the second-order result is in fact
exact?

Hint: to evaluate matrix elements of x̂, write x̂ in terms of the harmonic oscillator
raising and lowering operators â and â† and use the results â|n〉 =

√
n|n − 1〉 and

â†|n〉 =
√

n + 1|n + 1〉.
The perturbation is just the potential energy of a particle of charge q in a constant
electric field of magnitude E :

∆V̂ = −qE x̂

so that to lowest order, the energy shift of the nth level is

∆En = −qE〈n|x̂|n〉 = −qE
∞∫

−∞
u∗n(x) x un(x) dx ≡ 0

since the integrand is an odd function of x. So to lowest order, the energy levels are
unchanged.

At second order, the shift is given by

∆E(2)
n =

∑

m6=n

|Vmn|2
E

(0)
n − E

(0)
m

=
∑

m6=n

(−qE)2 |〈m|x̂|n〉|2
h̄ω(n−m)

Now the matrix element can be written in terms of matrix elements of â and â† using

x̂ =

√
h̄

2mω

(
â + â†

)



Thus

〈m|x̂|n〉 =

√
h̄

2mω
〈m|

(
â + â†

)
|n〉 =

√
h̄

2mω

[√
n δm,n−1 +

√
n + 1 δm,n+1

]

which tells us that only the terms with m = n ± 1 contribute to the sum. Plugging
this result in we find that

∆E(2)
n =

q2E2

h̄ω

h̄

2mω

[
n

1
+

(n + 1)

−1

]
= − q2E2

2mω2

To see that this is actually the exact solution, we note that the full Hamiltonian can
be written

Ĥ = − h̄2

2m

d2

dx2
+

1

2
mω2x2 − qE x

We introduce a new variable

ξ ≡ x− qE
mω2

Noting that

ξ2 = x2 − 2qE
mω2

x +
q2E2

m2ω4

we see that the Hamiltonian can be rewritten as

Ĥ = − h̄2

2m

d2

dξ2
+

1

2
mω2ξ2 − q2E2

2mω2

and thus the energy of the nth state of the full Hamiltonian has energy eigenvalues.

En = (n +
1

2
)h̄ω − q2E2

2mω2

which just differs from the usual 1-d oscillator Hamiltonian by a constant shift. Note
that each energy level in the perturbed state corresponds to a level in the unperturbed
state, so the quantum number n can still be used to label them.

5. Starting from the relativistic expression for the total energy of a single particle, E =
(m2c4+p2c2)1/2, and expanding in powers of p2, obtain the leading relativistic correction
to the kinetic energy.

For a single relativistic particle

E = (m2c4 + p2c2)1/2 = mc2

[
1 +

p2

m2c2

]1/2

= mc2

[
1 +

p2

2m2c2
+

1

2!

(
1

2

) (−1

2

)
p4

m4c4
+ . . .

]

= mc2 +
p2

2m
− p4

8m3c2
+ · · ·

Recalling that in special relativity, the kinetic energy is defined to be the difference
between the total energy and the rest energy, gives the desired result:

T ≡ E −mc2 =
p2

2m
− p4

8m3c2
+ . . .



for a plane wavefunction Φ(x) = A cos(kx), and determine whether Φ(x) is an eigen-
state for a relativistic free particle.

Taking ∆T = − p4

8m3c2
= − h̄4∇4

8m3c2
, We need to evaluate:

∫
Φ(x)∆T̂Φ(x)dx = −

∫
A2 cos(kx)

h̄4

8m3c2

d4

dx4
cos(kx) dx

=
∫

A2 h̄4k4

8m3c2
cos2(kx) dx

The normalisation is straightforward:

A2 =
∫

cos2(kx) dx

Thus for a normalised particle, the integrals cancel and we have:

∆T = − h̄4k4

8m3c2

Meanwhile, using the above

T̂A cos(kx) =

(
h̄2k2

2m
− h̄4k4

8m3c2

)
A cos(kx)

Hence cos(kx) is still an eigenstate for a free particle, with energy

Ek =
h̄2k2

2m
− h̄4k4

8m3c2


