
Quantum Physics 2011/12

Solutions to Tutorial Sheet 4: Time-dependence

1. An easy one to start with! A particle moving in the infinite 1-d square well potential

V (x) = 0 for |x| < a, V (x) = ∞ for |x| > a

is set up in the initial state (t = 0) described by the wavefunction

Ψ(x, 0) ≡ ψ(x) = [u1(x) + u2(x)] /
√

2

where u1(x), u2(x) are the energy eigenfunctions corresponding to the energy eigenval-
ues E1 and E2 respectively. Sketch the probability density at t = 0.

The wavefunction has positive interference
for x > a, and negative for x < a. It is zero
at cos(πx/2a)− sin(πx/a) = 0, i.e. −π/6

.

What is the wavefunction at time t ?

Recall that the expansion in energy eigenfunctions of a general solution of the tdse is

Ψ(x, t) =
∑
n

cn exp(−iEnt/h̄) un(x)

where the coefficients cn are constant in time if the Hamiltonian is time-independent,
which is the case here, so that

Ψ(x, 0) =
∑
n

cn un(x)

In the present case, c1 = c2 = 1/
√

2 and cn = 0, n ≥ 3 and thus

Ψ(x, t) =
1√
2

exp(−iE1t/h̄)u1(x) +
1√
2

exp(−iE2t/h̄)u2(x)

Calculate the probabilities P1 and P2 that at t = 0 a measurement of the total energy
yields the results E1 and E2 respectively. Do P1 and P2 change with time?

The probability of getting the result En in a measurement of the energy at t = 0 is
P (En) = |cn|2. Thus

P (E1) = P (E2) =

∣∣∣∣∣
1√
2

∣∣∣∣∣
2

=
1

2

At time t, the corresponding probabilities are:

|c1 exp(−iE1t/h̄)|2 = |c1|2 =
1

2

|c2 exp(−iE2t/h̄)|2 = |c2|2 =
1

2



so that P (E1) and P (E2) are time independent.

Calculate the probabilities P+(t) and P−(t) that at time t the particle is in the intervals
0 < x < a and −a < x < 0 respectively and try to interpret your results.

The probability that, at time t, the particle is in the interval 0 < x < a is

P+(t) =

a∫

0

|Ψ(x, t)|2 dx

since |Ψ(x, t)|2 dx is the probability of finding the particle in the infinitesimal interval
x→ x+ dx.

Now

|Ψ(x, t)|2 =
1

2
|exp(−iE1t/h̄)u1(x) + exp(−iE2t/h̄)u2(x)|2

=
1

2
|u1(x)|2 +

1

2
|u2(x)|2 +

1

2
exp[−i(E1 − E2)t/h̄]u1(x)u

∗
2(x)

+
1

2
exp[i(E1 − E2)t/h̄]u

∗
1(x)u2(x)

Defining ω ≡ (E2 − E1)/h̄, and noting that u1 and u2 are real, we obtain

P+(t) =
1

2

a∫

0

|u1(x)|2dx+
1

2

a∫

0

|u2(x)|2dx+ cosωt

a∫

0

u1(x)u2(x) dx

We can write down the values of the first two integrals without explicit evaluation if
we observe that both integrands are even functions of x, so that

a∫

0

|u1(x)|2dx =
1

2

a∫

−a

|u1(x)|2dx =
1

2

from the normalisation, with a similar result for u2. This tells us that particles in the
eigenstates u1 and u2 have equal chance of being on either side of zero.

We still have to evaluate

a∫

0

u1(x)u2(x) dx =
1

a

a∫

0

cos
(
πx

2a

)
sin

(
πx

a

)
dx

on substituting in the explicit form of the lowest two eigenfunctions for the symmetric
infinite square well.

Using the trignometric identity

sinA cosB ≡ 1

2
{sin(A+B) + sin(A−B)}

we obtain

a∫

0

u1(x)u2(x) dx =
1

2a

a∫

0

{
sin

(
3πx

2a

)
+ sin

(
πx

2a

)}
dx



=
1

2a

[
−2a

3π
cos

(
3πx

2a

)
− 2a

π
cos

(
πx

2a

)]a

0

=
1

2a

[
2a

3π
+

2a

π

]

=
4

3π

Putting it all together, we find

P+(t) =
1

2
+

4

3π
cosωt

P−(t) = 1− P+(t) =
1

2
− 4

3π
cosωt

Which implies that over time the probability distribution moves from side to side!

2. A system has just two independent states, |1〉 and |2〉, represented by the column ma-
trices

|1〉 →
(

1
0

)
and |2〉 →

(
0
1

)

With respect to these two states, the Hamiltonian has a time-independent matrix rep-
resentation (

E V
V E

)

where E and V are both real.

Show that the probability of a transition from the state |1〉 to the state |2〉 in the time
interval t is given without approximation by

p(t) = sin2
(
V t

h̄

)

[Hint: expand the general state |Ψ, t〉 in terms of |1〉 and |2〉 and substitute in the
tdse. Note that |1〉 and |2〉 are not energy eigenstates!]

The states |1〉 and |2〉 are NOT energy eigenstates, since the perturbed Hamiltonian is
not diagonal! Nevertheless, they form a complete set and we can expand an arbitrary
state as follows:

|Ψ, t〉 =
2∑

r=1

cr(t)|r〉

which has the matrix representation
(
c1(t)
c2(t)

)
= c1(t)

(
1
0

)
+ c2(t)

(
0
1

)

Substituting in the tdse gives

ih̄

(
ċ1(t)
ċ2(t)

)
=

(
E V
V E

) (
c1(t)
c2(t)

)

which yields the coupled equations

ih̄ċ1 = E c1 + V c2

ih̄ċ2 = V c1 + E c2



The neatest way to solve these equations is to take the sum and difference:

ih̄ (ċ1 + ċ2) = (E + V )(c1 + c2) ⇒ c1 + c2 = A exp[−i(E + V )t/h̄]

ih̄ (ċ1 − ċ2) = (E − V )(c1 − c2) ⇒ c1 − c2 = B exp[−i(E − V )t/h̄]

where A and B are constants of integration.

Alternatively one can find the eigenvalues and eigenvectors of the Hamiltonian (1, 1)/
√

2
and (1,−1)/

√
2 and write down the time evolution of state vector in the usual way.

If the system is in the state |1〉 at t = 0, then c1(0) = 1 and c2(0) = 0. Imposing these
initial conditions gives A = B = 1, so that

c2(t) =
1

2
exp(−iEt/h̄) {exp(−iV t/h̄)− exp(iV t/h̄)} = −i exp(−iEt/h̄) sin

(
V t

h̄

)

Thus the probability that the system is in state |2〉 at time t is

p(t) = |c2(t)|2 = sin2
(
V t

h̄

)

Compute the transition probability using first-order time-dependent perturbation theory,
taking the unperturbed Hamiltonian matrix to be that for which |1〉 and |2〉 are energy
eigenstates. By comparing with the exact result, deduce the conditions under which you
expect the approximation to be good.

We can treat the problem by perturbation theory by writing Ĥ = Ĥ0 + V̂ , where

Ĥ0 →
(
E 0
0 E

)
and V̂ →

(
0 V
V 0

)

so that |1〉 and |2〉 are eigenstates of Ĥ0 with eigenvalue E ≡ E1 = E2.

Time-dependent perturbation theory for the constant perturbation V̂ then gives

p21(t) =
1

h̄2

∣∣∣∣∣∣

t∫

0

V21 exp[i(E2 − E1)t
′/h̄] dt′

∣∣∣∣∣∣

2

=
V 2

h̄2

∣∣∣∣∣∣

t∫

0

dt′
∣∣∣∣∣∣

2

=
V 2t2

h̄2

This is the leading term in the series expansion of sin2 and so agrees with the exact
result provided that V 2t2/h̄2 ¿ 1, that is, V t¿ h̄.

3. ∗ A 1-d harmonic oscillator of charge q is acted upon by a uniform electric field which
may be considered to be a perturbation and which has time dependence of the form

E(t) =
A√
π τ

exp
{
−(t/τ)2

}

Assuming that when t = −∞, the oscillator is in its ground state, evaluate the proba-
bility that it is in its first excited state at t = +∞ using time-dependent perturbation
theory. You may assume that

∫ ∞

−∞
exp(−y2) dy =

√
π

〈n+ 1|x̂|n〉 =

√
(n+ 1)h̄

2mω
〈n+ i|x̂|n〉 = 0 − 1 > i > 1



First-order time-dependent perturbation theory for small V̂ (t) gives

pmk(∞) =
1

h̄2

∣∣∣∣∣∣

∞∫

−∞
Vmk(t) exp(iωmkt) dt

∣∣∣∣∣∣

2

where
Vmk = 〈m|V̂ (t)|k〉

In the present case,
V̂ (t) = −qE(t)x̂

Since x̂ is proportional to (â + â†), it only connects “nearest-neighbour” states in the
energy eigenvalue spectrum. Thus if the initial state is the oscillator ground state,
n = 0, the only possible final state (at first order) is the n = 1 state.

V10 = 〈1|V̂ (t)|0〉 = −qE(t)〈1|x̂|0〉 = −q
(

h̄

2mω

)1/2

E(t) and ω10 = ω

Thus

p10 =
q2A2

2πτ 2mh̄ω

∣∣∣∣∣∣

∞∫

−∞
exp

{
iωt− t2/τ 2

}
dt

∣∣∣∣∣∣

2

The integral may be evaluated by ‘completing the square’:

iωt− t2/τ 2 = −
(
t/τ − 1

2
iωτ

)2

− 1
4
ω2τ 2

We now change variables:

y ≡ t/τ − 1

2
iωτ, dy = dt/τ

and the desired integral becomes a standard Gaussian integral:

∞∫

−∞
exp

{
iωt− t2/τ 2

}
dt = exp(−1

4
ω2τ 2)τ

∞∫

−∞
exp(−y2) dy = exp(−1

4
ω2τ 2)τ

√
π

Substituting in the expression for the transition probability yields:

p10 =
q2A2

2mh̄ω
exp(−1

2
ω2τ 2)

Discuss the behaviour of the transition probability and the applicability of the pertur-

bation theory result when (a) τ ¿ 1

ω
, and (b) τ À 1

ω
.

(a) if τ ¿ 1

ω
, then exp(−1

2
ω2τ 2) ' 1 and we have

p10 ' q2A2

2mh̄ω
= constant

We expect perturbation theory to be good if p10 ¿ 1, that is, if

q2A2

2m
¿ h̄ω



Remark: In the limit τ → 0, the electric field becomes proportional to a Dirac δ-
function:

lim
τ→0

E(t) = Aδ(t)

and we obtain the stated result for τ ¿ 1

ω
. This is the impulse approximation.

(b) if τ À 1

ω
, then exp(−1

2
ω2τ 2) → 0 and thus the transition probability tends to zero,

even in the case q2A2/2m ≈ h̄ω. This is the adiabatic approximation.



4. The Hamiltonian which describes the interaction of a static spin-1
2

particle with an
external magnetic field, B, is

Ĥ = −µ̂.B
When B is a static uniform magnetic field in the z-direction, B0 = (0, 0, B0), the
matrix representation of Ĥ0 is simply

−1

2
γB0h̄

(
1 0
0 −1

)

with eigenvalues ∓1
2
γB0h̄ and for this time-independent Hamiltonian, the energy eigen-

states are represented by the 2-component column matrices

| ↑〉 →
(

1
0

)
and | ↓〉 →

(
0
1

)

Now consider superimposing on the static field B0 a time-dependent magnetic field of
constant magnitude B1, rotating in the x− y plane with constant angular frequency ω:

B1(t) = (B1 cosωt,B1 sinωt, 0)

If the Hamiltonian is now written as Ĥ(t) = Ĥ0 + V̂ (t), write down a matrix represen-
tation of V̂ (t).

V̂ (t) = −1

2
γh̄B1 (σx cosωt+ σy sinωt) = −1

2
γh̄B1

(
0 exp(−iωt)

exp(iωt) 0

)

Any spin state can be written

|Ψ, t〉 = c1(t) exp(−iE↑t/h̄)| ↑〉+ c2(t) exp(−iE↓t/h̄)| ↓〉
Obtain, without approximation, the coupled equations for the amplitudes c1(t), c2(t).

The full Hamiltonian has the representation

Ĥ(t) = −1

2
γh̄

(
B0 B1 exp(−iωt)

B1 exp(iωt) −B0

)

The matrix representation of the state vector at time t is

|Ψ, t〉 →
(
c1(t)

0

)
exp(−iE↑t/h̄) +

(
0

c2(t)

)
exp(−iE↓t/h̄)

Substituting this into the tdse

ih̄
∂

∂t
|Ψ, t〉 = Ĥ(t)|Ψ, t〉

gives the coupled first-order equations for the amplitudes:

ih̄ċ1(t) = −1

2
γh̄B1 exp[i(ω↑↓ − ω)t]c2(t)

ih̄ċ2(t) = −1

2
γh̄B1 exp[i(ω↓↑ + ω)t]c1(t)



where we have used the fact that the unperturbed energy eigenvalues are

E↑ = −1

2
γh̄B0 and E↓ =

1

2
γh̄B0

and defined

ω↑↓ = −ω↓↑ ≡ (E↑ − E↓)
h̄

= −γB0

* If initially at t = 0 the system is in the spin-down state, show that the probability
that at time t, the system is in the spin-up state is given without approximation by

p1(t) = |c1(t)|2 = A sin2
{

1

2

[
(γB1)

2 + (ω + γB0)
2
]1/2

t
}

where

A =
(γB1)

2

{(γB1)2 + (ω + γB0)2}
What is the corresponding probability, p2(t), that the system is in the spin-down state?
Sketch p1(t) and p2(t) as functions of time.

The given initial conditions correspond to c1(0) = 0 and c2(0) = 1.

We can obtain an exact solution to the above coupled equations by first eliminating
say c2(t) between the two equations.

The first equation gives

c2(t) = − 2i

γB1

exp[−i(ω↑↓ − ω)t] ċ1(t)

Differentiating with respect to t, we find that

ċ2(t) = − 2i

γB1

exp[−i(ω↑↓ − ω)t] c̈1(t)− 2(ω↑↓ − ω)

γB1

exp[−i(ω↑↓ − ω)t] ċ1(t)

but from the second of the coupled equations,

ċ2(t) =
iγB1

2
exp[i(ω↓↑ + ω)t] c1(t)

Equating these expressions for ċ2(t), noting that ω↑↓ = −ω↓↑ = −γB0, and simplifying
gives the following second-order differential equation for c1(t):

c̈1 + iΩċ1 + (
1

2
γB1)

2c1 = 0

where Ω ≡ ω + γB0.

To solve this, try a solution of the form c1(t) = A exp(ipt), which yields the auxiliary
equation

−p2 − pΩ + (
1

2
γB1)

2 = 0

with roots

p = −1

2
Ω± 1

2

√
Ω2 + (γB1)2 ≡ −1

2
Ω± 1

2
∆



where we have defined ∆ =
√

Ω2 + (γB1)2.

Thus the general solution is

c1(t) = exp(−1

2
iΩt)

[
A1 cos(

1

2
∆t) + A2 sin(

1

2
∆t)

]

The first initial condition c1(0) = 0 fixes the value of A1 to be zero. Thus

c1(t) = exp(−1

2
iΩt)× A2 sin(

1

2
∆t)

To determine A2, we need to use the second initial condition, c2(0) = 1. From the first
of the coupled equations, we have

c2(t) = − 2i

γB1

exp(iΩt)ċ1(t) = −2iA2

γB1

exp(
1

2
iΩt)

[
− iΩ

2
sin(

1

2
∆t) +

∆

2
cos(

1

2
∆t)

]

Setting t = 0 gives

c2(0) = 1 = −2iA2

γB1

∆

2

so that

A2 =
iγB1

∆

Finally, then we have for the probability amplitude

c1(t) =
iγB1

∆
exp(−1

2
iΩt) sin(

1

2
∆t)

so that the probability of finding the system in the spin up state at time t is

p1(t) = |c1(t)|2 =
∣∣∣∣
γB1

∆

∣∣∣∣
2

sin2(
1

2
∆t) = A sin2

{
1

2

[
(γB1)

2 + (ω + γB0)
2
]1/2

t
}

where

A =
(γB1)

2

{[(γB1)2 + (ω + γB0)2]}
The probability that the system is in the spin down state at time t is simply

p2(t) = 1− p1(t) = 1− A sin2
{

1

2

[
(γB1)

2 + (ω + γB0)
2
]1/2

t
}

Thus the two probabilities are periodic; p1(t) oscillates between 0 and its maximum
value, A, whilst p2(t) oscillates between its maximum value of 1 and its minimum value
of (1− A).
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Usually in practice, one has B1 ¿ B0, so that the amplitude A is quite small, being of
order (B1/B0)

2. However, something interesting happens if the angular frequency of
the rotating field, ω is tuned to the Bohr frequency ω↑↓ of the transition. In this case,
A = 1 and the probabilities

p1(t) = sin2(
1

2
γB1t), p2(t) = cos2(

1

2
γB1t)

are large, oscillating between 0 and 1, even for B1 ¿ B0. This is a resonance phe-
nomenon.
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The analysis of this problem forms the basis for high-precision methods for determining
magnetic moments of atoms and subatomic particles, and for techniques such as nuclear
magnetic resonance (NMR).


