
Quantum Physics 2011/12

Solutions to Tutorial Sheet 5: Variational Method, Molecules

1. Estimate the ground-state energy of a 1-dimensional simple harmonic oscillator using
as trial function

(a) ψa(x) = cosαx for |αx| < π/2, zero elsewhere,

(b) ψb(x) = α2 − x2 for |x| < α, zero elsewhere,

(c) ψc(x) = C exp(−αx2)

(d) ψd(x) = C(α− |x|) (for |x| < α, zero elsewhere)

(e) ψe(x) = C sinαx (for |αx| < π, zero elsewhere)

In each case, α is the variational parameter. Don’t forget the normalisation. Sketch
the wavefunctions and compare them with the actual ground-state wavefunction.

You may use the results

∞∫

−∞
exp(−αx2)dx =

√
π

α
and

π/2α∫

−π/2α

x2 cos2 αx dx = π(π2 − 6)/24α3

(a) The function is not normalised, so we need to calculate 〈ψT |ψT 〉:

〈ψT |ψT 〉 =

π/2α∫

−π/2α

cos2 αx dx =
1

2

π/2α∫

−π/2α

[1 + cos 2αx] dx =
1

2

[
x+

1

2α
sin 2αx

]π/2α

−π/2α
=

π

2α

Noting that
d2

dx2
cosαx = −α2 cosαx

we see that

〈ψT | − h̄2

2m

d2

dx2
|ψT 〉 =

h̄2α2

2m

π

2α

The integral needed for the potential energy

1

2
mω2〈ψT |x2|ψT 〉 =

1

2
mω2

π/2α∫

−π/2α

x2 cos2 αx dx =
1

2
mω2π(π2 − 6)/24α3

So now the quantity we need for the energy, with the normalisation, is:

E(α) =
〈ψT |Ĥ|ψT 〉
〈ψT |ψT 〉 =

h̄2α2

2m
+mω2(π2 − 6)/24α2

Minimising with respect to α gives

dE(α)

dα
=
h̄2α

m
−mω2(π2 − 6)/12α3 = 0



with solution

α2
min =

√
π2 − 6

12

mω

h̄

Substituting this value into the expression for E gives as an upper bound on the
ground-state energy

E(αmin) =

√
π2 − 6

12
h̄ω = 0.568h̄ω

(b) As before, we first calculate 〈ψT |ψT 〉:

〈ψT |ψT 〉 =

α∫

−α

(α2 − x2)2 dx =
16

15
α5

Noting that
d2

dx2
(α2 − x2) = −2

we see that the kinetic energy term is

〈ψT | − h̄2

2m

d2

dx2
|ψT 〉 =

h̄2

m

α∫

−α

(α2 − x2) dx =
4h̄2α3

3m

whilst the potential energy term is

〈ψT |1
2
mω2x2|ψT 〉 =

1

2
mω2

α∫

−α

x2(a2 − x2)2 dx =
8mω2α7

105

Combining these results gives

E(α) =
5

4

h̄2

mα2
+

1

14
mω2α2

The minimisation condition is

dE(α)

dα
= −5

2

h̄2

mα3
+

1

7
mω2α = 0

so that

α2
min =

√
35

2

h̄

mω

giving for the upper bound on the ground-state energy

E(αmin) =
5

4

√
2

35
h̄ω +

1

14

√
35

2
h̄ω = 0.598h̄ω

(c) First we determine the normalisation constant, C:

|C|2
∞∫

−∞
exp(−2αx2) dx = 1



Using the given Gaussian integral

〈ψT |ψT 〉 = |C|2
√
π

2α
= 1 ⇒ C =

(
2α

π

)1/4

To evaluate the kinetic energy term in the expectation value we can make use of the
trick described in lectures:

〈ψT | − h̄2

2m

d2

dx2
|ψT 〉 =

h̄2

2m

∞∫

−∞

∣∣∣∣∣
dψT

dx

∣∣∣∣∣
2

dx =
2h̄2α2|C|2

m

∞∫

−∞
x2 exp(−2αx2) dx

d

dα

∞∫

−∞
exp(−2αx2) dx = −2

∞∫

−∞
x2 exp(−2αx2) dx =

d

dα

√
π

2α
= −

√
π

2

1

2
α−3/2

Thus the desired integral is

∞∫

−∞
x2 exp(−2αx2) dx =

1

4

√
π

2α
· 1

α

giving

〈ψT | − h̄2

2m

d2

dx2
|ψT 〉 =

h̄2α

2m

Likewise the potential energy term is

〈ψT |1
2
mω2x2|ψT 〉 =

|C|2mω2

2

∞∫

−∞
x2 exp(−2αx2) dx =

mω2

8α

The minimisation condition is

dE(α)

dα
=

h̄2

2m
− mω2

8α2
= 0

giving

αmin =
mω

2h̄

and hence a bound

E(αmin) =
h̄ω

4
+
h̄ω

4
= 0.5 h̄ω

This is, of course, the exact result because our trial function is the correct ground-state
wavefunction for the 1-d oscillator.

(d) First, calculate the normalization constant

C2
∫ α

−α
(α− |x|)2 = 2C2

∫ α

0
(α− x)2 = 1

Which gives

C =
√

3/2α3



Now, we calculate the potential energy

< V >=
1

2
mω2C2

∫ α

−α
x2(α− |x|)2

= mω2C2[α2x3/3− 2αx4/4 + x5/5]α0

= mω2α2/20

The kinetic energy comes from the discontinuity at x = 0. One way to treat this is to
redefine the function as having a form ψ = C(α′−bx2) in a narrow region of half-width
δ about the origin, and then the real wavefunction ψT is the limit as δ → 0. To avoid
further discontiuities, we require the derivative to be continuous across the join. This
determines α′ and sets 2bδC = C The kinetic energy is then

< T >= −h̄2C2/2m
∫ δ

−δ
(α′ − bx2)(−2b)dx

=
3h̄

4mα2
[2α′bx− 2b2x3/3]δ−δ

= 3h̄2/2mα3(α′bδ − b2δ3/3)

As δ → 0, α′ → α whence < T >= 3h̄2/2mα2. Now we must minimise the total energy
with respect to α, i.e.

d

dα
[3h̄2/2mα2 +mω2α2/20] = 0

which gives:

α4 =
30h̄2

m2ω2

substituting for the energy:

U = h̄ω(
√

9/60 +
√

3/20) = h̄ω(
√

3/10) = 0.5477h̄ω

e) ψe(x) = C sinαx (for |αx| < π, zero elsewhere)

Normalisation 〈ψT |ψT 〉:

〈ψT |ψT 〉 =

π/α∫

−π/α

sin2 αx dx =
1

2

π/α∫

−π/α

[1− cos 2αx] dx =
1

2

[
x− 1

2α
sin 2αx

]π/α

−π/α
=
π

α

So C =
√

α
π
.

As in section (a), we notice that

d2

dx2
sinαx = −α2 sinαx



so that the kinetic energy

〈T 〉 = 〈ψT | − h̄2

2m

d2

dx2
|ψT 〉 =

h̄2α2

2m

Now the potential energy is

1

2
mω2〈ψT |x2|ψT 〉 =

1

2
mω2π

α

π/α∫

−π/α

x2 sin2 αx dx =
1

2
mω2π(π2 − 6)/24α3

which we get by either integrating by parts, using maple or using the standard integral.

π/a∫

−π/a

x2 sin2 nax dx =
π(2n2π2 − 3)

6n2a3

Solving for the parameter α gives:

α2 =

√
2π2 − 3

6

and substituting this back into the energy expression gives

E = 〈T 〉+ 〈V 〉 =

√
2π2 − 3

6
h̄ω = 1.67h̄ω

By inspection, the overlap integral between (e) and the others is zero, because (e) is
an odd function and (a-d) are even functions. Since (a-d) are bounds for the ground
state, and (e) is orthogonal to the ground state, it must represent an estimate for the
first excited state. Moreover, since the exact ground state of an even potential is an
even function, (e) is orthogonal to the exact ground state. Thus it provides an upper
bound to the energy of the first excited state.

2. * A particle moves in one dimension in the potential

V (x) = ∞, |x| > a, V (x) = 0, |x| ≤ a

Use a trial function of the form

ψT (x) =

{
(a2 − x2)(1 + cx2), |x| ≤ a
0, |x| > a

where c is a variational parameter, to obtain an upper bound on the ground-state energy.
You are advised to use Maple to solve the minimisation problem. How does your bound
compare with the exact ground-state energy?

Despite the number of integrals in these exercises, almost all modern quantum me-
chanics is done using computers. Once you have a maple script to solve the variational
problem, its simply a case of altering the potentials and trial wavefunction to use it
for other cases.



Firstly we compute the normalisation factor

〈ψT |ψT 〉 =

a∫

−a

(a2 − x2)2(1 + cx2)2 dx

noting that the trial function vanishes for |x| > a. The Maple command is:

trial := (a^2-x^2)*(1+c*x^2);

i1 := int(trial*trial,x=-a..a);

Noting that in the potential well, there is no potential energy term, we just have to
calculate the kinetic energy term. We use the trick employed in the previous question:

〈ψT | − h̄2

2m
∇2|ψT 〉 =

h̄2

2m

a∫

−a

∣∣∣∣∣
dψT

dx

∣∣∣∣∣
2

dx

We can evaluate the integral with Maple as follows:

d1 := diff(trial,x);

i2 := int(d1*d1,x=-a..a);

We then obtain

E(c) =
〈ψT | − h̄2

2m
∇2|ψT 〉

〈ψT |ψT 〉
by taking the ratio of the previously evaluated integrals:

ratio := (hbar^2/(2*m)*i2/i1);

simplify(%);

to obtain

E(c) =

(
3h̄2

4ma2

)
11a4c2 + 14a2c+ 35

a4c2 + 6a2c+ 21

We then carry out the minimisation:

quad := diff(ratio,c);

solve(quad=0,c);

evalf(%);

giving two roots for c:

c(1) = −0.22075a−2, c(2) = −7.31771a−2

Substituting these values in the expression for E(c)

sols := %;

bound1 := subs(c=sols[1],ratio);

bound2 := subs(c=sols[2],ratio);



gives

E(c(1)) = 1.23372
h̄2

ma2
, E(c(2)) = 12.7663

h̄2

ma2

so the minimum is reached for c = c(1), to be compared with the exact result for the
ground-state energy:

E1 =
h̄2π2

8ma2
= 1.23370

h̄2

ma2

So our variational estimate is an excellent approximation!

3. * Repeat the previous problem taking

ψT (x) =

{
(a2 − x2)(x+ cx3), |x| ≤ a
0, |x| > a

as the trial function. Why does this give an upper bound for the first excited energy
level? Compare your variational result with the exact eigenvalue of the n = 2 level.

The trial function has odd parity and is therefore orthogonal to the exact ground-state
wavefunction, which has even parity. Thus it will give an upper bound on the energy
of the lowest odd-parity state, which is the first excited state of the symmetric square
well.

A similar exercise to the previous question, greatly simplified by using Maple:

trial := (a^2-x^2)*x*(1+c*x^2);

i1 := int(trial*trial,x=-a..a);

d1 := diff(trial,x);

i2 := int(d1*d1,x=-a..a);

ratio := (hbar^2/(2*m)*i2/i1);

simplify(%);

quad := diff(ratio,c);

solve(quad=0,{c});

evalf(%);

which gives

E(c) =

(
11h̄2

4ma2

)
23a4c2 + 54a2c+ 63

5a4c2 + 22a2c+ 33

and two roots for c:

c(1) = −.0516975a−2, c(2) = −3.24574a−2

Substituting these values in E(c) gives:

E(c(1)) = 4.9377
h̄2

ma2
, E(c(2)) = 25.0623

h̄2

ma2

so the minimum is reached for c = c(1), to be compared with the exact result for the
first excited-state energy:

E2 =
h̄2π2

2ma2
= 4.9348

h̄2

ma2



4. A “1d atom” has ground state wavefunction u1(x) = exp−α|x|. Consider a ring of
N such atoms, one centred on x = 0 separated by a distance d. Using the single site
wavefunctions u1j(x+jd) as LCAO basis functions, what are the LCAO wavefunctions
according to Bloch’s theorum in 1D?

If a Hamiltonian has a periodic potential, then the operator D̂f(x) = f(x − d) com-
mutes with the Hamiltonian and eigenstates of the Hamiltonian must also be eigen-
states of D̂. The wavefunction must be single valued, hence φ(x) = φ(x + Nd), this
means that

φ(x) = exp(2πnix/Nd)u(x)

where u(x) must have the same periodicity as the lattice. Assuming LCAO

u(x) =
N∑

j=1

u1(x+ jd)

Using the single site wavefunctions u1j(x+ jd) as LCAO basis functions, write down
the ground state wavefunction for ring of N such atoms separated by a distance d, which
is an eigenstate of the displacement operator assuming that < u1(x)|u1(x+d) ><< 1.

The ground state wavefunction must obey rules for translational symmetry, and will
correspond to the least oscillatory wave, so it must be an eigenstate of the translation
operator defined by D̂f(x) = f(x− d). :

In matrix representation with the single-site basis, this operator is




0 1 0 0 ...
0 0 1 0 ...
0 0 0 1 ...
0 0 0 0 ...
... ... ... ... ...
1 0 0 0 ...




Where the final line represents the periodic boundaries.

The least oscillatory eigenvector solution to this is:

Φ = (1, 1, 1, 1....) ≡ ∑

j

u1(x− jd)

What is the normalisation for this wavefunction? This represents one (delocalised)
electron. The normalisation constant c is then given by

c2
∑

jk

〈u1(x− jd)|u1(x− kd)〉 = 1

Neglecting off diagonal terms 〈u1(x− jd)|u100(x− kd)〉 = δjk gives c =
√

1/N .

A computational physicist solves for this wavefunction using the variational method,
with a trial wavefunction ψT (r) and a set of variational parameters ck, k = 2π/Nd

ψT (r) =
∑

k

ck cos kx



Using your knowledge of the exact atomic solution u1, what can you say about the
coefficients ck, and allowed values of k?

This trial wavefunction is simply a Fourier Series, with only even (cosine) terms. Thus
the coefficients are the Fourier coefficients of the expansion of the wavefunction. Since
the wavefunction is periodic with period d, we require the sum to be over k = 2πn/d
for integer n. Also, because u1 has discontinuous slope at x = 0, there is a delta
function in the kinetic energy, and many Fourier components are likely to be needed
to describe the wavefunction well.

Remark: This is convenient for computation, because the trial wavefunction can be
stored as an array of ck coefficients, and moreover the contribution to the kinetic energy
from each term is simply |ck|2h̄2k2/2m.

What would you get from a trial wavefunction of the form

ψT (x) =
∑

k

ck sin kx

This is an odd function, orthogonal to the ground state and will give an upper bound
to the first excited state. In fact, it gives an odd function at each atomic site, so it
corresponds to the lowest state in the second band of states with n = 2: there are many
lower lying states in the u1 band.

5. Obtain a variational estimate of the ground-state energy of the hydrogen atom by taking
as trial function

ψT (r) = exp(−αr2)

How does your result compare with the exact result?

Now

〈ψT |ψT 〉 =
∫

exp(−2αr2) d3r = 4π

∞∫

0

r2 exp(−2αr2) dr =
1

2
√

2

(
π

α

)3/2

where we have used the Gaussian integral which appears in the last part of Question 1,
noting the different limits.

In 3D, the kinetic energy term can be evaluated by the integration by parts trick, which
is easier, but for interest here we will take the longer route. It is mathematically quite
interesting to show that the same result is obtained by both methods.

〈ψT | − h̄2

2m
∇2|ψT 〉 = 〈ψT | − h̄2

2mr2

d2

dr
r2 d2

dr
|ψT 〉 (1)

= − h̄2

2m

∫
e−αr2

(4α2r2 − 6α)e−αr2

4πr2dr (2)

=
3h̄2

32m

√
2π

a
(3)

Where the given Gaussian integral could be evaluated by parametric differentiation or
by using Maple, to give

〈ψT | − h̄2

2m
∇2|ψT 〉 =

h̄2α

2m

3

2
√

2

(
π

α

)3/2



The potential energy term involves a simple integral and is

〈ψT | − e2

(4πε0)r
|ψT 〉 = − e2

(4πε0)
4π

∞∫

0

r exp(−2αr2) dr = − e2

(4πε0)

π

α

Thus we obtain

〈ψT |Ĥ|ψT 〉
〈ψT |ψT 〉 = E(α) =

3h̄2α

2m
− e2

(4πε0)
2

(
2

π

)1/2

α1/2

Minimising gives
dE(α)

dα
=

3h̄2

2m
− e2

(4πε0)

(
2

π

)1/2

α−1/2 = 0

yielding

α
1/2
min =

e2

(4πε0)

(
2

π

)1/2 2m

3h̄2

and substituting back into the expression for E yields the upper bound on the energy:

E(αmin) = − 8

3π

(
e2

(4πε0)

)2
m

2h̄2 = − 8

3π
Ry = −11.54 eV



How does your result compare with the exact result? Sketch the trial wavefunction and
the actual wavefunction on the same graph.

The exact answer is the Rydberg constant, -13.6eV. The wavefunction is an exponential
Ψexact ≡ exp(−ar).

The exponential (red, exact solution) and
gaussian (green, trial solution) should each
be normalised such that

∫
Ψ∗Ψ4πr2dr = 1,

thus setting a=1 we get the graph opposite.
Note that although the trial wavefunction is
a pretty poor estimate of the exact one, yet
the energy is still only 15% wrong
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