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Solutions to Tutorial Sheet 6: Time-Dependence and Pseudopotentials

For the first two problems, you may assume that the hydrogen eigenfunctions are:

u100 = (πa3
0)
−1/2 exp(−r/a0)

u211 = −
(
πa3

0

)−1/2 r

8a0

sin θ exp (iφ) exp (−r/2a0)

u210 =
(
8πa3

0

)−1/2 r

2a0

cos θ exp (−r/2a0)

u21−1 =
(
πa3

0

)−1/2 r

8a0

sin θ exp (−iφ) exp (−r/2a0)

and ∫ ∞

0
exp(−br) rn dr = n!/bn+1, n > −1

1. A hydrogen atom is placed in a uniform but time-dependent electric field of magnitude

E = 0 for t < 0, E = E0 exp(−t/τ) for t ≥ 0 (τ > 0)

where E0 is a constant. At time t = 0, the atom is in the ground (1s) state. Show that
the probability, to lowest order in perturbation theory, that as t → ∞, the atom is in
the 2p state in which the component of the orbital angular momentum in the direction
of the field is zero, is given by

p1s→2p = |c(∞)|2 =
215

310

(eE0a0)
2

(E2p − E1s)2 + (h̄/τ)2

[Hint: take the field direction to be the z-direction. Write down the potential energy
of the electron in the given field and treat as a time-dependent perturbation].

We will use time-dependent perturbation theory. Since the field decays away exponen-
tially there is only a finite probability that the transition will occur. The approximation
from TDPT is that there is no probablity of transition to 2p and back again.

We take the direction of the electric field to be the z-direction, as suggested. Then the
perturbation for t ≥ 0 is

Ĥ ′(t) = −e (−E0z exp(−t/τ))

and the transition probability amplitude is

c1s→2p(t) = (ih̄)−1

t∫

0

〈210|Ĥ ′(t′)|100〉 exp(iωt′) dt′

where ω = (E2p − E1s)/h̄.

Using the given eigenfunctions, the required matrix element is

〈210|Ĥ ′|100〉 = eE0 exp(−t/τ)〈210|r cos θ|100〉

=
eE0 exp(−t/τ)

πa4
04
√

2

2π∫

φ=0

π∫

θ=0

∞∫

r=0

r4 exp(−3r/2a0) dr cos2 θ sin θ dθ dφ



The φ integration just gives 2π, whilst the θ integration yields

+1∫

−1

cos2 θ d(cos θ) =

[
cos3 θ

3

]+1

−1

=
2

3

The radial integral is
∞∫

0

r4 exp(−3r/2a0) dr =
(

2a0

3

)5

4!

from the given integral. Putting it all together

〈210|Ĥ ′(t)|100〉 = A exp(−t/τ) where A =
215/2

35
eE0a0

Thus

c1s→2p(t) =
A

ih̄

t∫

0

exp(−t′/τ + iωt′) dt′ =
A

ih̄

[
exp(iωt− t/τ)− 1

iω − 1/τ

]

Thus the desired probability is

p1s→2p = |c(∞)|2 =
215

310

(eE0a0)
2

(E2p − E1s)2 + (h̄/τ)2

If we had numbers, for we should now check that this probability is indeed small - if
so then we justify our use of TDPT, if not then we know we should solve the problem
exactly.

What is the probability that it is in the 2s-state?

We can write:

c1s→2s(t) = (ih̄)−1

t∫

0

〈200|Ĥ ′(t′)|100〉 exp(iωt′) dt′

However, we note that the integral over space has an odd function as its integrand:
〈200|z|100〉. It is therefore zero, and there is no probability of a 1s → 2s transition to
first order.

Remark: As we saw in the Stark effect, a constant field induces a dipole on the atom.
This permits dipole radiation, i.e. the emission of a single photon. Since a photon
has angular momentum ` = 1, conservation of angular momentum tell us it cannot be
involved in a transition from an ` = 0 state to another ` = 1. The 1s → 2s transition
is allowed at second order, corresponding to the emission of two photons of opposite
` = ±1.

2. The neutral kaon states produced by pion decay via the strong interaction are |K0〉
and |K0〉, eigenvalues of strangeness Ŝ such that Ŝ|K0〉 = |K0〉 and Ŝ|K0〉 = −|K0〉.
Acting on these states with a weak force-related operator ĈP gives:

CP |K0〉 = |K0〉; CP |K0〉 = |K0〉

Evaluate the CP eigenstates for neutral kaons |K1〉 and |K2〉 with eigenvalues CP=+1
and CP=-1 respectively.



In the basis of K0, K
0

the CP matrix becomes:

(
0 1
1 0

)
.

with eigenvectors (
√

1
2
,±

√
1
2
), eigenvalues ±1 corresponding to CP eigenstates:

|K1〉 = (|K0〉+ |K0〉)/
√

2; |K2〉 = (|K0〉 − |K0〉)/
√

2

Show that the wavefunction a1(t) = a1(0)e−t/2τe−iEt/h̄|Φ(r)〉, where E is the energy,
represents decay with lifetime τ , and that the amplitudes of the |K1〉 and the |K2〉 states
at rest (i.e. with E = mc2) are:

a1(t) = a1(0)e−t/2τ1e−im1c2t/h̄ and a2(t) = a2(0)e−t/2τ2e−im2c2t/h̄

The number of particles described by the wavefunction (Intensity) is given by

|a1(t)|2| =
∫

d3ra∗1(0)e−t/2τeiEt/h̄Φ∗(r)a1(0)e−t/2τe−iEt/h̄Φ(r) = |a1(0)|2e−t/τ

and the expressions for a1(t), a2(t) are obtained by substitution of E = mc2 and the
appropriate decay constants.

Show that the intensity of |K0〉 is measured by the operator 1
2
(Ŝ + 1). What is the

operator for the intensity of |K0〉?
Consider a general state |φ〉 = a0|K0〉+ b0|K0〉

〈φ|1
2
(Ŝ+1)|φ〉 =

1
2
(1+1)|a0|2〈K0|K0〉+1

2
(−1+1)|b0|2〈K0|K0〉+a∗0b0〈K0|K0〉+a0b

∗
0〈K0|K0〉 = |a0|2+0+0+0

using the orthogonality relation 〈K0|K0〉 = 0 The total intensity is proportional to
〈φ|φ〉 = |a0|2 + |b0|2, of which |a0|2 represents the K0s.

Similarly, the intensity of K
0

is |b0|2. This comes from switching the minus sign in the
first two terms, i.e. it is the expectation value of 1

2
(1− Ŝ)

At t=0 a kaon beam is in a pure |K0〉 state, with intensity proportional to |a0(0)|2 = 1
show that at time t

|a0(t)|2 = 〈1
2
(Ŝ + 1)〉 =

1

4

[
e−t/τ1 + e−t/τ2 + 2e−t/2τ1e−t/2τ2 cos(m12t)

]

and I(K
0
) =

1

4

[
e−t/τ1 + e−t/τ2 − 2e−t/2τ1e−t/2τ2 cos(m12t)

]

where m12 = (m2 −m1)c
2/h̄.

Consider a general state in the K1, K2 basis, and the same state in K
0
, K0 we have:

Φ = a1|K1〉+ a2|K2〉 = a0|K0〉+ b0|K0〉



These are two equivalent descriptions of the same system. From above, we have |a0|2 =
1
2
|a1 + a2|2 |b0|2 = 1

2
|a1 − a2|2

If we assume an initial state pure K0, unit intensity 1 = |a0(0)|2, 0 = |b0(0)|2 then

solving the above gives a1(0) = b1(0) =
√

1
2
. For the time dependence, we must consider

decays of |K1〉 and |K2〉, thus

|a0(t)|2 =
1

2
|a1(t) + a2(t)|2

Substituting the time dependent expressions for a1, a2

|a0(t)|2 =
1

4
(a1(0)e−t/2τ1eim1c2t/h̄ + a2(0)e−t/2τ2eim2c2t/h̄)× (1)

(a1(0)e−t/2τ1e−im1c2t/h̄ + a2(0)e−t/2τ2e−im2c2t/h̄) (2)

=
1

4

[
e−t/τ1 + e−t/τ2 + 2e−t/2τ1e−t/2τ2(eim12t + e−im12t)

]
(3)

=
1

4

[
e−t/τ1 + e−t/τ2 + 2e−t/2τ1e−t/2τ2 cos m12t

]
(4)

as required. Similarly we obtain:

|b0(t)|2 =
1

2
|a1(t)− a2(t)|2

|b0(t)|2 = 〈1
2
(Ŝ + 1)〉 =

1

4
|a0(0)|2

[
e−t/τ1 + e−t/τ2 − 2e−t/2τ1e−t/2τ2 cos(m12t)

]

Sketch, as a function of time, the expectation values of: 1
2
(Ŝ+1), Ŝ, Ŝ2, ĈP , 1

2
(ĈP +1)

in a system which began in state |K0〉. For the sake of the plots, we take units where
1/2τ1 = m12 = 1, |a0(t)|2 = 1

the expectation value for number of |K0〉 particles is then 〈1
2
(1 + Ŝ)〉 = |a0(t)|2

while the expectation value for number of |K0〉 particles 〈1
2
(1+ Ŝ)〉 increases from zero,

then oscillates.
The strangeness decays towards zero over time.
and the expectation value of CP, |a1(t)|2 − |a2(t)|2| also drops as the system becomes
pure |K2〉



〈ĈP 〉 =
1

2
|a0(0)|2

(
e−t/τ1 − e−t/τ2

)

While 1
2
(1 + CP ), the number of K1 particles, drops to zero.

Figure 1 shows an experiment where kaons are generated in state |K0〉. After 10−9

seconds the kaons pass through a small region of matter, where they interact via the
strong interaction (assume that after 10−9 seconds all the |K1〉 particles have decayed).
Very soon after, the kaons leave the matter and move into a region of vacuum where
they begin to decay via the weak interaction (ĈP ). Assume that all coherence between
this region and the previous region is lost i.e. the wavefunction is completely collapsed
onto its strong interaction eigenstates. Evaluate the appropriate eigenstates and inten-
sities just before the beam enters the matter and just after it leaves the matter. What
is the total intensity of kaons and antikaons which survive a further 10−9 seconds?

When formed, the beam is in a pure state |K0〉,

Φ(0) = |K0〉; a1(0) =

√
1

2
; a2(0) =

√
1

2

at t = 10−9 we have

a1(t) =

√
1

2
e−5.5e−im1c2t/h̄ ≈ 0 a2(t) =

√
1

2
e−0.01e−im1c2t/h̄

i.e. pure K2 |a2(0)|2 ≈ 1
2

Φ(t) =

√
1

2
|K2〉 =

1

2
(|K0〉 − |K0〉)



Passing through the matter, the kaons are returned to eigenstates of Ŝ by wavefunction
collapse. The interference disappears and we have to treat the subsequent evolution of
K0〉 and |K0〉) independently.

Leaving the matter, the appropriate collapsed eigenstates are |K0〉 and |K0〉. Consider
the intensities at time t.

I(K0)(t) = |〈Φ(t)|K0〉|2 =
1

4
.

similarly

I(K0)(t) = |〈Φ(t)|K0〉|2 =
1

4
.

These now evolve as above, until after another 10−9 both the K0 and the K0 decay,
half the kaons remaining as K2, and half the kaons decaying as K1. Thus the final
intensity of kaons is

I(2t) =
1

2
[I(K0)(t) + I(K0)(t) = frac14

The final kaon intensity is a quarter of the initial intensity.



Had it not been for the matter, what would have been the total intensity of kaons and
antikaons after 2× 10−9?

Had the matter not intervened, the final kaon intensity would have been half of the
initial intensity (strictly 1

2
(e−0.02 + e−11.1)

The effect of the matter on the beam is known as regeneration - it regenerates the |K1〉
eigenstate which then decays away.

n.b. The regeneration here is known as incoherent regeneration, because the wave-
function is collapsed in the matter and all ‘memory’ of the previous state is lost. In
practice there is also an effect known as coherent regeneration, in which a difference

between the amount of scattering of |K0〉 and |K0〉 leads to a component of |K1〉 being
reintroduced. There are also other decay modes, corresponding to slightly different
basis sets for the kaons.

3. Compare question 3 to a system of polarisers and light beams.

An initially unpolarised beam of light moving in the z direction has equal amounts of
all polarisations. It can be polarised by passing through a polariser to form a plane-
polarised beam ex, with half the initial intensity. If this ex beam (analogous to pure
K0) now passes through a polariser oriented at 45 degrees to the first we halve the
intensity and create another plane-polarised beam (ex + ey)/2. It appears that some
of the ey has been regenerated.

4. This question illustrates the principle of the pseudopotential.

A particle is bound in 1D by a potential which has a complicated form for |x| < xc

but is zero outside this “cut-off” radius. It is known to have a bound eigenstate with
energy −E0. Show that in this region of space, the wavefunction can be written as

Φ(x > xc) = a exp(−k|x|)

and determine k.

Outside the cutoff, the Schroedinger equation is:

−h̄2

2m

d2

dx2
Φ(x) = −E0Φ(x)

Which with the given wavefunction gives

−h̄2k2

2m
a exp(−kx) = −E0a exp(−kx).

From which it follows that k =
√

2mE0/h̄.

What can you say about a?

Only part of the wavefunction lies outside xc, and we do not know how much. So the
normalisation a remains undetermined.

Now suppose that we know that the normalisation constant a = a0. Show that the
ground state of a finite square well pseudopotential can be used to give exactly the same
wavefunction i.e. ΦPS(x) = Φ(x), for x > xc.



For a bound state in the finite square well, we have exactly the same Schroedinger
equation outside xc, so the eigenfunction must also be a decaying exponential, and
provided we match the energy and a0 it will be identical ΦPS(x > xc) = Φ(x > xc).

Writing the ground state wavefunction of the square well as:

ΦPS(x) = b cos(k1x) |x| < xc

ΦPS(x) = Φ(x) = a exp(−k|x|) |x| > xc

where k1 =
√

2m(V − E0)/h̄, determine three simultaneous equations for the values of
the finite well depth V and range xc, and the normalization constant b.

At the boundary, we have that the actual and pseudowavefunctions and their slopes
must match.

a0 exp−kxc = b cos(k1xc)

−ka0 exp−kxc = −k1b sin(k1xc)

You may think that there should be two other equations here from continuity of Φ(x),
however we are assuming that Φ(x < xc) is unknown (i.e. too complicated to calculate).

The third equation comes from the normalisation of the pseudowavefunction:

2
∫ xc

0
b cos(k1x)dx + 2

∫ ∞

xc

a0 exp (−kx)dx = 1

This gives three equations in three unknowns (k1, b and xc), which in principle can be
solved. In practice, we have the same problem as with the finite square well: one of
the equations is transcendental so it cannot be solved analytically.

When are pseudopotentials useful?

We notice that Φ(x) is not necessarily the ground state of the potential, although
ΦPS(x) is the ground state of the square well. This means that a very complicated
Φ(x) wavefunction can be replaced by a smooth, nodeless ΦPS(x). If V (x) is the
potential of an atom, and we are interested in combining many such atoms which
do not overlap (i.e. are more than 2xc apart) then the pseudowavefunctions give the
correct behaviour in the space between atoms. Any error inside xc will be the same in
the free atom and the many-atom problems: so it will cancel. It is especially useful if
we wish to describe valence electrons, assuming that high energy “core” electrons do
not contribute to the bonding. The problem of keeping wavefunctions orthogonal is
removed because the pseudowavefunction is a ground state.

In practice, pseudopotentials are slightly more complicated than square wells, having
extra degrees of freedom. These are used to match the energies of wavefunction and
pseudowavefunction, their values and slopes at the cutoff, and to satisfy “norm conser-
vation” (i.e. the probability of the electron being inside xc is the same in each case).
Often one degree of freedom is left “spare”, so that the cut-off can be chosen freely to
suit the problem at hand.



5. *Online bonus question

The electric dipole moment operator is D ≡ −er. The position vector can be written

r = r {e1 sin θ cos φ + e2 sin θ sin φ + e3 cos θ}
where ei, i = 1, 2, 3, are the usual Cartesian unit vectors in the x, y, z directions and
θ, φ are the polar and azimuthal angles in spherical polar coordinates.

Calculate the dipole matrix elements for the radiative transition from the n = 2 states
to the 1s state of atomic hydrogen.

We need to evaluate matrix elements of the position operator, r,

r = r {e1 sin θ cos φ + e2 sin θ sin φ + e3 cos θ}
for initial states |2lm〉, m = 1, 0,−1, l = 1, 0 and a final state |100〉. We consider each
case in turn.

The first one is easy.

〈100|r|200〉 =

2π∫

0

π∫

0

∞∫

0

u∗100(r) r u200(r) r2 sin θ dr dθ dφ

Considering each component in turn, for e1 the φ integral is:

2π∫

0

cos φ dφ = 0

for e2 the φ integral is:
2π∫

0

sin φ dφ = 0

and for e3 the θ integral is:
π∫

0

sin θ cos θdθ = 0

Hence regardless of the direction of the dipole moment, 〈100|r|200〉 = 0 : the transition
rate is zero, and dipole transitions from u2s to u1s are forbidden. Physically, this is
because the dipole radiation emits a single photon with angular momentum l = 1. The
angular momentum of the atom doesn’t change, so transition cannot conserve angular
momentum.

〈100|r|211〉 =

2π∫

0

π∫

0

∞∫

0

u∗100(r) r u211(r) r2 sin θ dr dθ dφ

The radial integral is

∞∫

0

r4 exp(−3r/2a0) dr =
(

2a0

3

)5

4!



using the given integral.

Noting that exp(iφ) = cos φ + i sin φ, the angular integration is

2π∫

0

π∫

0

[
e1 sin3 θ

(
cos2 φ + i cos φ sin φ

)
+ e2 sin3 θ

(
cos φ sin φ + i sin2 φ

)

+ e3 cos θ sin2 θ (cos φ + i sin φ)
]
dθdφ

We use the following simple integrals

2π∫

0

cos φ dφ =

2π∫

0

sin φ dφ =

2π∫

0

cos φ sin φ dφ = 0,

2π∫

0

sin2 φ dφ =

2π∫

0

cos2 φ dφ = π

and

π∫

0

sin3 θ dθ =

π∫

0

sin2 θ sin θdθ =

+1∫

−1

(1− cos2 θ) d(cos θ) =
[
cos θ − 1

3
cos3 θ

]+1

−1
=

4

3

to give for the angular integral
4π

3
[e1 + ie2]

Including the normalisation factors thus gives

〈100|r|211〉 = − 1

8πa4
0

·
(

2a0

3

)5

4! · 4π

3
[e1 + ie2] = −27

35
[e1 + ie2] a0

Thus

|〈100|r|211〉|2 = (〈100|r|211〉)∗ · 〈100|r|211〉 =
215

310
a2

0

In the calculation of 〈100|r|21− 1〉 the only difference is that cos φ + i sin φ is replaced
by cos φ− i sin φ and the overall sign of the matrix element is + instead of −. Thus

〈100|r|21− 1〉 =
27

35
[e1 − ie2] a0

giving

|〈100|r|21− 1〉|2 =
215

310
a2

0

Lastly, we consider the case where m = 0 and the angular integral is

2π∫

0

π∫

0

[
e1

(
sin2 θ cos θ cos φ

)
+ e2

(
sin2 θ cos θ sin φ

)
+ e3 cos2 θ sin θ

]
dθdφ

The φ integrals in the first two terms vanish and

π∫

0

cos2 θ sin θ dθ =

+1∫

−1

cos2 θ d(cos θ) =
2

3

so that

〈100|r|210〉 =
1

4
√

2 πa4
0

·
(

2a0

3

)5

4! · 4π

3
e3 =

215/2

35
a0 e3



and hence

|〈100|r|210〉|2 =
215

310
a2

0

All three elements from 2p → 1s are the same. This should be expected, because the
dipole is symmetric with respect to interchanging x, y and z, and the final state 1s is
spherically symmetric.

The spontaneous transition rate for the 2p → 1s transition is given by

Rmk =
ω3

mk

3πc3h̄ε0

|Dmk|2 =
e2ω3

mk

3πc3h̄ε0

|rmk|2

where k and m label initial (2p) and final (1s) states and α ≡ e2/(4πε0)h̄c is the fine
structure constant.

Explain in words how this relates to the Fermi Golden Rule.

Like the Fermi Golden Rule,

R =
2π

h̄

[
|Vmk|2 g(Em)

]
Em=Ek

Einstein’s spontaneous emission rate describes how quickly transitions take place be-
tween states. The Dipole operator plays the role of the perturbing matrix element,
while the density of final states has only one final state for the atom (1s), but many
states for the different directions of emitting the photon encapsulated in the geometric
term. The degeneracy of the initial 2p state does not affect the transition rate, because
each atom can be in only one of those states. When the matrix element is zero (as for
2s → 1s the transition is forbidden.

Assuming that an initial 2p state is unpolarised; that is, each of the three possible values
of m` is equally likely, show that this is equal to.

R2p→1s =
(

2

3

)8 mc2

h̄
α5

since D = −er. We can express Rspon
mk in terms of the fine structure constant α =

e2/(4πε0)h̄c:

Rspon
mk =

4

3
α

ω3
mk

c2
|rmk|2

We have calculated |rmk|2 for the cases where the initial state is 2P with m = 1, 0,−1
and the final state is the 1s state. For an initial 2p state which is unpolarised, each
m value is equally likely and we must average over the probabilities for each m with
equal weight:

1

3

+1∑

m=−1

|〈100|r|21m〉|2 =
1

3

[
215

310
a2

0 +
215

310
a2

0 +
215

310
a2

0

]
=

215

310
a2

0

Thus the desired rate is

R2p→1s =
4

3
α

ω3

c2

215

310
a2

0 =
217

311
α

ω3

c2
a2

0



where the transition frequency, ω, may be obtained from the Bohr formula for the
energy levels of the hydrogen atom:

ω = (E2p − E1s)/h̄ = −1

2
α2mc2

4h̄
+

1

2
α2mc2

h̄
=

3

8
α2mc2

h̄

We can express the Bohr radius in terms of the fine structure constant: a0 = h̄/mcα
to give, finally,

R2p→1s =
217

311

α

c2

33

29
α6 m3c6

h̄3

h̄2

m2c2α2
=

(
2

3

)8 mc2

h̄
α5


