
Quantum Physics 2011/12

Solutions to Tutorial Sheet 7:

1. The 4s conduction electron is bound to a Potassium ion with energy E0. A K+
2 ion can

be formed in exactly the same way as H+
2 . With reference to your notes on H+

2 , sketch
the variation of energy with atomic separation for a K+

2 molecule with a 4s conduction
electron. On the same graph, without evaluating any integrals, sketch the energies for
K+

2 molecule with a 4p conduction electron (ignore degeneracy and assume only one
p-level is involved in the bond). Explain why the electronic density of states for a gas
of K+

2 molecules formed from 4s atomic orbitals comprises delta functions, and sketch
it taking the atomic energy as zero. What is the integral of the density of states per
atom? How many of these states have lower energy than separated ion and atom?

The spatial wavefunctions can be treated in the same way as H+
2 , leading to gerade

and ungerade states.

Eg,u(R) =
∫
ψg,u∗(r, R) Ĥ ψg,u(r, R) d3r = 〈u4s(r1)|Ĥ|u4s(r1)〉±〈u4s(r1)|Ĥ|u4s(r2)〉

Eg,u(R) =
∫
ψg,u∗(r, R) Ĥ ψg,u(r, R) d3r = 〈u4p(r1)|Ĥ|u4p(r1)〉±〈u4p(r1)|Ĥ|u4p(r2)〉

Two 4p states can be combined similarly where u4p is the atomic wavefunction. There
is a shift of the energy for far-separated ions. Bonds between pairs of p-orbitals are
referred to as π bonds, and are generally weaker than so-called σ-bonds between pairs
of s-orbitals. Some molecules have both, while others have sp-bonding which combines
s-orbitals with p-orbitals.
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Thus there are only two possible distinct energies, so the density of states is simply
two delta functions at Eg and Eu. Including spin, there are four possible states per
molecular ion, so the integral of the density of states is 4 per ion, or two per atom.
Only one state per atom (g) has lower energy than the separate components.

Note the skew in the energy shifts, the ungerade energy is further from the atomic
energy than the gerade one. This is primarily due to including ion-ion repulsion in
the energy. Note also that we are ignoring gerade bonding states made of linear
combinations of 3d-orbitals which have lower energy than the 4s-ungrade case.
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2. When many ions are brought together, ignoring interactions between the ions, the den-
sity of states becomes continuous and we can approximate it by a rectangle.
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Calculate the density of states, D, per atom in this figure

The constant density of states is D. As before, since we are only considering 4s
states, the integral of the density of states must be 2 electronic states per atom, hence
2WD = 2 implies D = 1/W . This has units of “electronic states per atom per unit
energy”, e.g. eV−1.

Assuming that each K ion contributes n electrons, calculate the cohesive energy of
potassium due to filling of the density of states? By symmetry, the Fermi energy must
be at E0, so the cohesive energy (difference between atom and solid) is

∫ E0

E0−W
D(E − E0)dE = −W/2



In the more general case of transition metals, the d-band DoS integrates to 10, and
there are nd electrons per atom. How does the cohesive energy (difference between free
atom and atom in a solid) vary with nd?

Now 2WD = 10, so D = 5/W . First find the Fermi energy

∫ EF

E0−W
DdE = nd

EF = E0 +W (
nd

5
− 1)

Now the cohesive energy is

∫ EF

E0−W
D(E − E0)dE = −Wnd(1− nd

10
)

Thus the cohesive energy of transition metals varies parabolically across the band.

Ion-ion repulsion and Electron-electron repulsion have been ignored, what qualitative
effect would they have?

Ion-ion repulsion is absent in the free atom, so will raise the energy of the solid, reducing
cohesion. There is electron-electron interaction in both solid and atom near the ions,
but the long range nature suggests that this effect will also reduce cohesion.

List other terms which have been ignored in this analysis

• Correlation energy

• Hybridization with other non d-states (incomplete basis in LCAO approximation)

• Non-degeneracy of the atomic d-levels

• Magnetic effects

3. A system comprises a particle moving in two 1D Simple Harmonic potentials separated
by a distance 2R, whose centres repel. Its Hamiltonian can be written

Ĥ =
−h̄2

2m
∇2 + V (x) + 1/R

V (x) = Min
(

1

2
mω2(x−R)2,

1

2
mω2(x+R)2

)

What is the expectation value of the energy for a single SHO ground state wavefunction
at one site?

The normalised ground state SHO wavefunction centred on R is:

u0(x−R) =

√
α√
π

exp−α
2(x−R)2

2

Defining Ĥ0(x+R) as the SHO Hamiltonian centred at x = −R, we can write:

Ĥ = Ĥ0(x+R) x < 0



Ĥ = Ĥ0(x+R)− 2mω2xR x > 0

So that, since 〈u0(x+R)|Ĥ(x+R)|u0(x+R)〉 = 1
2
h̄ω:

〈Ĥ〉 =
1

2
h̄ω − 2mω2R

α√
π

∫ ∞

0
x exp−α2(x+R)2dx+

1

R

The 1/R is just a constant which does not affect the wavefunction. Using the given
integral

〈H〉 =
1

2
h̄ω +

mω2R√
πα

(
− exp(−a2R2) + αR

√
π(1− erf(αR))

)
+

1

R

Note that for large R the second term goes to zero because the wells are far apart,
while for small R it goes to zero because we revert to a single well.

Assuming that the ground state wavefunction can be approximated by a linear combina-
tion of single SHO wavefunctions at each site, write down the appropriate wavefunction
combinations for eigenstates with definite parity

The Hamiltonian is invariant under the parity operator x→ −x, thus the eigenfunc-
tions must be a linear combination of the basis states:

Φ±(x) = (u0(x+R)± u0(x−R)) /
√

2

Hence, evaluate the energy of the ground state.

The lowest energy state is the one without nodes, the symmetric (bonding) linear
combination state:

Φ+ =

√
α

2
√
π

[exp(−α
2(x+R)2

2
) + exp(−α

2(x−R)2

2
)]

for which the energy is the sum of direct and exchange terms: H11 + H12. The anti-
symmetric state has higher energy H11 −H12.

The integrals we will need are:

H11 = 〈u0(x+R)|Ĥ|u0(x+R)〉

H12 = 〈u0(x−R)|Ĥ|u0(x+R)〉

The diagonal term H11 are exactly the same as for 〈H〉 in the first part of the question.
The off diagonal term requires both kinetic and potential energy integrals.

H12 = T12 + V12

T12 =
−h̄2

2m

α√
π

∫
exp−α

2

2
(x−R)2 d

2

dx2
exp−α

2

2
(x+R)2dx



=
−h̄2

2m

α√
π

exp−α2R2
∫

exp−α2x2[α4x2 − 2α4xR + α4R2 − α2]dx

Using standard Gaussian integrals, and the fact that α2 = mω/h̄

T12 = h̄ω(
1

4
− 2α2R2) exp(−α2R2)

As a sanity check, note that as R → 0 we recover the SHO result, while if the two
potential wells are separated R→∞ the mixing term becomes zero.

Turning now to the potential energy

V12 =
1

2
mω2 α√

π
2

∫ ∞

0
(x−R)2 exp−α

2

2
(x−R)2 exp−α

2

2
(x+R)2dx (1)

=
mω2α√

π
exp(−α2R2)

∫ ∞

0
(x−R)2 exp(−α2x2)dx (2)

=
mω2α√

π
exp(−α2R2([

√
π

4α3
− 2R

1

2α2
+

√
π

α
R2] (3)

= h̄ω exp−α2R2(
1

4
− αR/

√
π + α2R2) (4)

So that:

H12 = h̄ω exp(−α2R2)
(

1

2
− αR/

√
π − α2R2

)

and, including the repulsion between centres, the ground state energy becomes

E0 =
1

2
h̄ω +

h̄ωαR√
πα

(
− exp(−a2R2) + αR

√
π(1− erf(αR))

)

+ h̄ω exp(−α2R2)
(

1

2
− αR/

√
π − α2R2

)
+ 1/R

Explore the limits R→ 0 and R→∞. Without further calculation, evaluate the energy
of the first three excited states in the limit R→∞.

As R → 0 the potential becomes a single well SHO. The energy of the SHO ground
state increases to h̄ω, but the 1/R term diverges, keeping the particles apart.

As R→∞, the ground state becomes that of the SHO, 1
2
h̄ω, as does the first excited

state (two states, one in each oscillator). The second and third excited states must
correspond to the n = 1 level of one of the SHOs, hence have energy 3

2
h̄ω

4. Four monovalent ions, with attractive potential V (r) are arranged in a tetrahedron
with edgelength R. The ground state for electons on the isolated ions is u0(r), positive
everywhere. Write down the Hamiltonian matrix describing the system in the LCAO
approximation, assuming that all three-centre integrals are zero



The Hamiltonian for this system is:

−h̄2

2m
∇2 +

4∑

i=1

V (r−Xi)

We also define the isolated ion Hamiltonian:

H0 =
−h̄2

2m
∇2 + V (r)

note that the ∇2 operator is independent of the ion positions

The basis functions are u0(r−Xi) for atom positions Xi i = 1, 4, corresponding to the
single ion’s Hamiltonian H0.

We are assuming triple integrals like 〈u0(r−Xi)|H0(r−Xj)|u0(r−Xk)〉 are zero if
i, j, k are all different.

Define
〈u0(r)|H0(r)|u0(r)〉 = E0

〈u0(r)|V (r −R)|u0(r)〉 = ∆E

〈u0(r −R)| − h̄2∇2/2m+ V (r) + V (r −R)|u0(r)〉 = V12

and the one-electron Hamiltonian matrix becomes.




E0 + 3∆E V12 V12 V12

V12 E0 + 3∆E V12 V12

V12 V12 E0 + 3∆E V12

V12 V12 V12 E0 + 3∆E




Evaluate the wavefunctions in the LCAO approximation

This has eigenvectors, eigenvalues:

1

2
(1, 1, 1, 1); E0 + 3∆E + 3V12

√
1

2
(1,−1, 0, 0); E0 + 3∆E − V12

√
1

2
(0, 0, 1,−1); E0 + 3∆E − V12

1

2
(−1,−1, 1, 1); E0 + 3∆E − V12

The three degenerate states are not eigenstates of the tetrahedral symmetry operators:
if that was required we would make linear combinations of them, which would also be
solutions to the question as posed.

By considering the sign of the integrals, Vij = 〈u(r−Ri)|V (r−Ri)|u(r−Rj)〉 , where
Ri and Rj are the positions of ions i and j, show that the ground state of the tetrahedron



has lower energy than the separated atoms or of two diatomic molecules if electron-
electron interaction is ignored

The first order perturbation term is

∆E =
∫
u100(r)V (r−R)u100(r)dr

and, the “hopping” term is

V12 = 2
∫
u100(r−R)V (r−R)u100(r)dr

where the factor of 2 occurs because there are two terms which give identical (symmetry-
equivalent) integrals.

u100 is positive everywhere, We are told that V (r−R) is attractive - i.e. negative.
Thus ∆E and V12 come from integrating a negative quantity over space, so must both
be negative. This tells us that the ground state is the symmetric (1, 1, 1, 1) state with
energy E0 + ∆E + 3V12 < E0.

For monovalent ions we have four electrons, two in the (1, 1, 1, 1) state (spin state
↑↓ − ↓↑) and two in some linear combination of the degenerate states. The energy of
this would be:

4E0 + 12∆E + 4V12

Which, given that ∆E and V12 are negative, has lower energy than the free atoms 4E0.

The molecules would have a one-electron Hamiltonian




E0 + ∆E V12 0 0
V12 E0 + ∆E 0 0
0 0 E0 + ∆E V12

0 0 V12 E0 + ∆E




With doubly degenerate eigenvalues E0 +∆E±V12. Each state can hold two electrons
of opposite spin, so all four electrons are in the lowest energy state (two covalent bonds)
giving an energy. 4E0 + 4∆E+ 4V12, but this is still higher (not as strongly bound) as
the tetrahedron.

Given the above, explain qualitatively why hydrogen forms diatomic molecules rather
than tetrahedra?

Assuming three-centre orbitals are zero, and using the LCAO are both good approx-
imations. But ignoring electron-electron and ion-ion repulsion is not, since they are
comparable to the ion-electron interaction. The electron-electron and atom-atom re-
pulsion is higher in the tetrahedron, and so whether the system forms molecules (like
hydrogen) or solids (like lithium) depends on V (r).
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