
Solutions to Tutorial Sheet 8

† denotes an online-only bonus question.

1. † A helium atom has two electrons in states nlm and n′l′m′. Write down wavefunctions
which are antisymmetric with respect to exchange, and calculate the degeneracy for all
combinations with n = 1, n′ ≤ 3.

We will expand the spatial wavefunctions in a basis of products of single particle states.
We will expand the spin wavefunctions likewise, then the total wavefunction will be an
antisymmetric product of spin and spatial. We will ignore normalisation.

Note that the exchange here is with respect to the particle labels, it should not be
confused with the parity operator (r → −r) despite each using the same symbol for
the operator (P̂12).

Labelling the electron positions r1, r2, using one-particle hydrogenic orbitals unlm as
a basis, and ignoring electron-electron interactions, there are two degenerate spatial
states Φ1 = |unlm(r1)un′l′m′(r2)〉 and Φ2 = |un′l′m′(r1)unlm(r2)〉. Under the exchange
interaction we have

P12Φ1 = Φ2; P12Φ2 = Φ1

So the appropriate linear combinations come from diagonalising the matrix:

P12 =

(
〈Φ1|P12|Φ1〉 〈Φ1|P12|Φ2〉
〈Φ2|P12|Φ1〉 〈Φ2|P12|Φ2〉

)

To give spatial eigenfunctions Φ1 + Φ2 (P12 = 1) and Φ1 − Φ2. (P12 = −1)

For the spin, we have four possible products of one-particle states: ↑↑, ↓↑, ↑↓, ↓↓,
which gives an matrix representation for the exchange operator:

P12 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




and exchange eigenstates: ↑↑, (↓↑ + ↑↓), ↓↓ with P12 = 1, (↓↑ − ↑↓) with P12 = −1.

To get antisymmetric wavefunctions, we need P space
12 P spin

12 = −1. the allowed combina-
tions are then:

(Φ1 + Φ2)(↓↑ − ↑↓)

(Φ1 − Φ2) ↑↑
(Φ1 − Φ2)(↓↑ + ↑↓)

(Φ1 − Φ2) ↓↓



There are also four symmetric (P space
12 P spin

12 = 1) combinations which are not permitted
for fermions.

Note further that if nlm = n′l′m′, then (Φ1 − Φ2) = 0, so only one state exists.

Degeneracy, ignoring electron-electron interactions: n = 1 and

n′ = 1: 1 (u100(r1)u100(r2))(↓↑ − ↑↓)
n′ = 2: 4 × 2 × 4/2 = 16: All (4) permutations above for u100 with each of u200 u210

u211 u21−1, both (2) symmetric and antisymmetric cases, combined with any of the (4)
spin wavefunctions, reduced by a factor of two since only the overall antisymmetric
wavefunctions are allowed.

n′ = 3: 9 × 2 × 4/2 = 36 All (9) permutations above for u100 with each of u300 u310

u311 u31−1 u320 u321 u322 u32−1 u32−2, then as above.

2. † In muonic helium, one of the electrons is replaced by a muon. Write down the
appropriate wavefunctions for states equivalent to those in question 1.

In muonic helium, the muon and electron are distinguishable, so the wavefunction
does not have to be an eigenstate of P̂12. Defining Φ1 = |unlm(r1)un′l′m′(r2)〉 and
Φ2 = |un′l′m′(r1)unlm(r2)〉, with r1 and r2 the electron and muon positions resectively.

There are then eight possible wavefunctions

(Φ1)(↓↑), (Φ1)(↑↑), (Φ1)(↑↓), (Φ1)(↓↓),

(Φ2)(↓↑), (Φ2)(↑↑), (Φ2)(↑↓), (Φ2)(↓↓)

For the ground state, each particle in |u100〉, Φ1 = Φ2 and there are only four different
states.

For excited states with electron in |unlm〉 and muon in |un′l′m′〉, we have always Φ1.

For n = 1, n′ = 2 we have two degenerate states for the electron (from spin) and
4×2 = 8 for the muon. There is no restriction from exchange, so we have 16 degenerate
states. n = 2, n′ = 1 also has 16, by the same reasoning.

For n = 1, n′ = 3 we have two degenerate states for the electron (from spin) and
9 × 2 = 18 for the muon. There is no restriction from exchange, so we have 36
degenerate states. n = 2, n′ = 1 also has 36, by the same reasoning.

There are also similar numbers of states with the muon in nlm and the electron in
n′l′m′, but these have different energy and are not degenerate with the states above.

3. The isotropic harmonic oscillator in 3 dimensions is described by the Hamiltonian

Ĥ =
p̂2

2m
+

1

2
mω2r̂2

where p̂2 ≡ p̂ · p̂ and r̂2 ≡ r̂ · r̂ . By writing Ĥ as

Ĥ =
∑

i

{
p̂2

i

2m
+

1

2
mω2x̂2

i

}
i = 1, 2, 3



show that the eigenfunctions of Ĥ are simply products of 1-dimensional oscillator eigen-
functions. Assuming the usual formula for the energy eigenvalues of a 1-dimensional
harmonic oscillator, show that the eigenvalues of Ĥ are given by

En = (n +
3

2
)h̄ω n = 0, 1, 2, . . .

Writing Ĥ =
∑

i Ĥi with

Ĥi =

{
p̂2

i

2m
+

1

2
mω2x̂2

i

}

it is easy to show that the eigenfunctions of Ĥ are simply products of 1-dimensional
oscillator eigenfunctions. Consider such a product. Let

Un(x1, x2, x3) ≡ un1(x1) un2(x2) un3(x3)

where the 1-dimensional eigenfunctions un1(xi) satisfy the eigenvalue equations

Ĥiuni
(xi) = Eni

uni
(xi), i = 1, 2, 3

and the eigenvalues are given by the usual formula for the 1-dimensional harmonic
oscillator:

Eni
= h̄ω

(
ni + 1

2

)
, ni = 0, 1, 2, 3, . . .

Then

ĤUn =
(
Ĥ1 + Ĥ2 + Ĥ3

)
un1(x1)un2(x2)un3(x3)

= (En1 + En2 + En3) un1(x1)un2(x2)un3(x3) ≡ EnUn

where
En ≡ En1 + En2 + En3 = h̄ω

(
n1 + n2 + n3 + 3

2

)
≡

(
n + 3

2

)
h̄ω

and we have defined
n ≡ n1 + n2 + n3

Since each of n1, n2, n3 takes integer values 0, 1, 2, . . . etc., the same is true of n. How-
ever, any given value of n can in general be obtained in several ways, giving rise to
degeneracy as illustrated in the following table:

n n1 n2 n3 degeneracy, gn

0 0 0 0 1
1 1 0 0

0 1 0 3
0 0 1

2 2 0 0
0 2 0
0 0 2 6
1 1 0
1 0 1
0 1 1



If two identical, spin 1/2, fermions are placed in the 3D-SHO potential, what is the
degeneracy of the first excited state?

The ground state is non-degenerate. Both electrons are in the same n=0 state, so
the spatial wavefunction is exchange-symmetric, which means th spin must be the
antisymmetric singlet.

The first excited state has one electron in n=0 and one in n=1. There are six possible
states, three symmetric and three antisymmetric. Combined with appropriate spin
singlets or triplets this gives (3× 1 + 3× 3) = 12 states.

The second excited state may have one electron in n=0 and one in n=2. There are six
possible states, 3 symmetric and 3 antisymmetric. Combined with appropriate spin
singlets or triplets this gives (3× 1 + 3× 3) = 12 states.

Or it may have two excitations with n=1, either both on the same electron, or one on
each. This is a bit more complicated as there are 9 permutations. Of these, six have
the electrons in different spatial states leading to (6 × 1 + 6 × 3) = 24 states. Three
combinations have the electrons in the same spatial state: as with the ground state
these must be singlets, so there are only three of them.

This gives a total of 12+24+3= 39 possible second excited states for two electrons in
a 3D-SHO.

*By considering the number of ways that a fixed integer, n, can be partitioned into three
non-negative integers, show that the eigenvalues are 1

2
(n + 1)(n + 2)–fold degenerate.

The degree of degeneracy, gn, is the number of ways that the integer, n, can be parti-
ioned into 3 integers, n1, n2, n3, all of which ≥ 0.

Consider n objects on a line and two barriers which serve to partition the n objects
into 3 sets:

The number of arrangements of the n objects + 2 barriers is (n + 2)! However, these
are not all distinct since for a given arrangement of the n objects there are 2! = 2
arrangements of the barriers (ie they can be swapped), whilst for fixed positions of the
barriers, there are n! equivalent arrangements of the n objects. Thus the number of
distinct partitions of n is

gn =
(n + 2)!

2! n!
=

1

2
(n + 1)(n + 2)

4. The 3-dimensional isotropic harmonic oscillator can also be solved in spherical polar
coordinates, since V (r) is a central potential, with energy eigenstates labelled by n, ` and
mz, as for the hydrogen atom (except that, by convention, the ground state is labelled
by n = 0 rather than n = 1). By using the parity properties of the eigenfunctions
and the degree of degeneracy, try to find the angular momentum quantum number, `,
associated with the lowest three energy levels.



The ground state is straightforward. In Cartesian coordinates, in the notation of the
previous question,

U0(x1, x2, x3) = u0(x1) u0(x2) u0(x3)

There is no degeneracy and the parity is even, since the 1-dimensional ground-state
eigenfunction is even. This must correspond to ` = 0 since the spherical harmonic Y 0

0

has even parity and there is no degeneracy with respect to m. Another way of saying
this is that the wavefunction is spherically symmetric.

The first excited level is equally straightforward: the parity is odd and the degree of
degeneracy is 3. In Cartesians, the energy eigenfunctions are

u1(x1) u0(x2) u0(x3), u0(x1) u1(x2) u0(x3) and u0(x1) u0(x2) u1(x3)

and so must correspond to a solution in spherical polars with ` = 1, which has parity
(−1)` = −1 and degeneracy (2` + 1) = 3: spherical harmonics Y −1

1 Y 0
1 and Y 1

1 (i.e.
sin θe−iφ; cos θ; sin θeiφ .

Note that the third of these corresponds to the wavefunction with ` = 1 and m = 0.
However, first two eigenfunctions do not correspond to states of definite mz, but to
linear combinations of states with mz = 1 and mz = −1.

At the second excited level, things are more complicated. The parity is again even and
the degree of degeneracy is 6. The Cartesian eigenfunctions are

u2(x1) u0(x2) u0(x3), u0(x1) u2(x2) u0(x3), u0(x1) u0(x2) u2(x3),

u1(x1) u1(x2) u0(x3), u1(x1) u0(x2) u1(x3), u0(x1) u1(x2) u1(x3)

Even parity implies even `. The only way to get a total degeneracy of 6 is to take both
` = 0 and ` = 2, since ∑

`=0,2

(2` + 1) = 1 + 5 = 6

We are using the fact that the parity properties and the degree of degeneracy are
physical properties of the system which cannot depend on our choice of coordinates.

The cartesian eigenfunctions are not necessarily eigenfunctions of the angular mo-
menta. To obtain definite ` and mz with well defined angular momenta would have to
take linear combinations of these. These could be found by building a 6x6 matrix with
elements such as 〈u2(x1) u0(x2) u0(x3)|l̂z|u0(x1) u2(x2) u0(x3)〉 and finding the eigen-
vectors. Presumably the eigenvalues would be -2,-1, 0,0,1, -1. The pair of states with
lz = 0 could then be separated by building a 2x2 matrix for L̂. I didn’t expect you to
do this here!

The point of this question is to show that considering symmetry and degeneracy can
simplify some aspects of solving the problem, and to illustrate that there may be
more than one set of good quantum numbers, incompatible with other good sets (here
Nx, Ny, Nz for the cartesian eigenstates, or E, `, mz for the spherical polar eigenstates)

5. A 1-d infinite square-well potential between 0 and 2a is occupied by two indistinguishable
spin-1

2
fermions. Write down the possible degenerate states for the ground state and

first two excited states.



The ground state has both fermions in the spatial ground state, and is therefore sym-
metric with exchange. For fermions, the spin state must be antisymmetric, i.e. singlet
spin

Φ(x1, x2) = |1, 1〉 = (1/a) sin(πx1/2a) sin(πx2/2a)(↑↓ − ↓↑)/
√

(2)

If the particles repel one another via a delta function potential,

V (x1, x2) = 2aV0δ(x1 − x2)

use perturbation theory to evaluate the shift in energy of the ground state and show
that if the fermions are non-interacting, the ground-state energy is the same as for
distinguishable particles.

The potential does not involve the spin, hence we can write:

∆E = 〈11|V |11〉 = 2aV0

∫ ∫
Φ∗(x1, x2)δ(x1 − x2)Φ(x1, x2)dx1dx2

Using the property of the delta function that for any f :
∫ ∫

δ(x1, x2)f(x1, x2)dx1dx2 =
∫

f(x, x)dx

∆E = 2aV0

∫
|Φ(x, x)|2dx = 2V0/a

∫ 2a

0
sin4(πx/2a)dx = 4V0

∫ 1

0
sin4(πy)dy

The integral is 3/8, so ∆E = 3V0/2 The wavefunction is a simple product, as it would
be for distinguishable particles. Thus the energy shift is the same, although in the case
of distinguishable particles the state would be fourfold degenerate.

Now evaluate the energy shift for the first excited state due to the interaction, com-
paring the case of indistinguishable particles with that for distinguishable ones.

The first excited state is |1, 2〉, but this does not obey exchange symmetry. We must
make symmetric and antisymmetric combinations, and thus we have singlet and triplet
combinations with the spatial states

Φ±(x1, x2) = (|1, 2〉 ± |2, 1〉)
√

2

This means the integrals required for the perturbation are

∆E = (〈1, 2|V |1, 2〉+ 〈2, 1|V |2, 1〉)/2± (〈2, 1|V |1, 2〉+ 〈1, 2|V |2, 1〉)/2

By symmetry

〈1, 2|V |1, 2〉 = 〈2, 1|V |2, 1〉

〈2, 1|V |1, 2〉 = 〈1, 2|V |2, 1〉

And using the delta function property we find that



〈1, 2|V |1, 2〉 = 2V0/a
∫ ∫

sin2(πx/2a) sin2(πx/a)dx

〈1, 2|V |2, 1〉 = 2V0/a
∫ ∫

sin2(πx/2a) sin2(πx/a)dx

i.e. direct and exchange integrals are the same

Using the given integral ∆E = V0 ± V0

In the distinguishable case, we would have only the 〈1, 2|1, 2〉 integral, i.e. ∆E = V0

Comment on the value of the triplet state.

The triplet state corresponds to the antisymmetric spatial state, i.e. the negative
sign. An antisymmetric spatial wavefunction implies that the exclusion principle holds
in space: the two particles cannot be in the same place. Since the delta function
perturbation acts only when the two particles are in the same place, the energy is
unshifted by this perturbation.


