Quantum Physics 2008/09

Solutions to Tutorial Sheet 10: Bell's Theorem

1. (a) $\frac{1}{4}$
(b) $\cos ^{2}\left(\theta_{A}\right) \cos ^{2}\left(\theta_{B}\right)$
(c) $\frac{1}{2} \cos ^{2}\left(\theta_{A}-\theta_{B}\right)$
(d) $\frac{1}{4}$
(e) $\frac{1}{2} \cos ^{2} \frac{1}{2}\left(\theta_{A}-\theta_{B}\right)$

The factor of two arises because opposite-polarised photons (x and y) are at 90° while opposite spins $S_{z}= \pm \frac{1}{2}$ are at 180° to one another.
Hidden variables methods would give the same result for (a), (b) and (d), but will incorrectly predict for (c) $\frac{1}{4} \cos ^{2}\left(\theta_{A}-\theta_{B}\right)$ and for (e) $\frac{1}{4} \cos ^{2} \frac{1}{2}\left(\theta_{A}-\theta_{B}\right)$
The probability averaged over all θ_{A} and θ_{B} is $\frac{1}{4}$ in every case.
2. Obviously there is no unique solution! Alain Aspect wrote a nice summary as a news and views article in Nature.

Bell's inequality test: more ideal than ever, Nature 398189 (1999)

