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Synopsis: Black Body Radiation and the birth of quantum mechanics

Thermal radiation as a thermodynamic system

For radiation inside a cavity, the cavity walls at tem-
perature T are considered to be the surroundings and
the ‘empty’ cavity containing the radiation as the
system. In equilibrium, the radiation inside the cav-
ity is characterised by the temperature T of its sur-
roundings. Its volume will be the volume V of the
cavity. The radiation also has an energy (U), which
increases with increasing temperature (think of a do-
mestic electric oven). Reasoning based on thermo-
dynamics and kinetic theory lead to a value for the
pressure of the radiation.
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Visualised as photons in a box, the radiation in the cavity can be treated in an analogous way to
the kinetic theory of molecules in a box. In particular the formula for pressure = P = 1

3 Nmv2
rms for N

molecules in unit volume having mass m and root-mean-square velocity vrms can be re-used replacing
vrms with the speed of light c and replacing mass per unit volume (Nm) by its energy equivalent u divided
by c2 where u denotes energy density.

This gives P = 1
3 u for the pressure exerted by the radiation. For a parti-

tioned oven having two joined compartments (A and B) made of different
materials but both at the same temperature T , it is unavoidable that the
radiation in the two compartments will have the same value of energy den-
sity. If uA > uB, the flow of radiation (heat) through the joining gap would
make A cool and B heat up, without any work being done on the system by
some external agency. A similar conclusion is reached for the case uB > uA.
Thermal equilibrium requires equal energy density.
To avoid violating the Clausius version of the second law, u – summing
over all wavelengths present – has to be a function of temperature only:
u = u(T ). Inserting filters connecting the two ovens allows radiation at
each wavelength to be treated as a separate system, so it can also be con-
cluded that the energy density at a given wavelength is also a function of
temperature only; uλ = uλ (λ ,T ).
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Equipartition and the ultraviolet catastrophe

In classical mechanics, the equipartition theorem said that, in thermal equilibrium, energy is shared
equally among all of its various forms, e.g. rotational, translational, vibrational motion. It can be proven
from Newtonian dynamics provided it is possible to exchange energy among those forms.

For black body radiation, it implied that energy should be shared equally between all frequencies.
But since electromagnetism allows infinite possible frequencies, that would mean infinite energy.

1



Planck, and the energy spectrum of cavity radiation

In what follows, we show that classical thermodynamics allows deductions about cavity radiation, in
particular resolving the so-called ultraviolet catastrophe. It is observed that u =

∫
∞

0 uλ dλ (“area under
the curve”) is very strongly temperature-dependent.

First consider the explicit dependence of u on T . From the central
equation of thermodynamics, and one of the Maxwell’s relations,(

∂U
∂V

)
T
= T

(
∂P
∂T

)
V
−P

Using P = 1
3 u, U = uV and u = u(T ) we get

u =
1
3

T
du
dT
− 1

3
u =⇒ 4

dT
T

=
du
u

=⇒ u =

(
4σ

c

)
T 4

(4σ/c) is the constant of integration (c is the velocity of light). It
is shown below that the energy radiated per unit area of surface per
second by an ideal radiator is then equal to σT 4 (see below). The
constant of proportionality σ is “Stefan’s constant”.

The full Planck distribution as a function of frequency ν = c/λ cannot quite be derived from Stefan’s
Law. However, we know it has a finite integral (no “ultraviolet catastrophe”), we know the T-dependence
of that integral (Stefan’s Law) and from experiment that when uν(ν ,T ) plotted as a function of ν , it
shows a single maximum, at a frequency that depends on temperature T .

It is often claimed that Planck derived his Law from quantising the radiation. This is misleading, in
fact he figured it out from thermodynamics, the rederivation from postulating quantised radiation came
later. Planck realised that the entropy was fundamental to the problem. From the Central equation for
radiation at fixed volume we can relate the enthalpy and entropy of the subset of photons with frequency
ν , and from that we can the define an independent temperature of each subset Tν . But because all the
radiation ν is in thermal contact with all other frequencies, thermodynamics equilibrium demands that
these temperatures are all equal and there is a universal relationship between the entropy and the energy.

Tν =

(
∂Uν

∂Sν

)
V
= T, ∀ν

Although there was no expression for the full distribution, the energy in tails of the distribution were
well known. For large wavelengths Rayleigh showed that

U(λ ,T ) ∝ T λ
−4; 1/T = c1λ

5/U

And for short wavelengths Wein has shown that

U(λ ,T ) ∝ λ
−5exp(−const/λT ); 1/T = c2 lnU + c3 lnλ

5

To help eliminate T Planck considered the quantity connecting energy and entropy(
∂ 2S
∂U2

)
V
=

(
∂ (1/T )

∂U

)
V

∝ λ
4/U(LowU);λ

5/U2(HighU) =
c1

U(U + c2)

the final form being a guess which satisfied both limits. From here, he integrated wrt U to get the
expression for 1/T in terms of U , reintroducing λ via constants of integration, and rearranged to get.
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Uλ (λ ,T ) ∝ λ
−5
(

1
ehc/λkBT−1

)
where I wrote Planck’s “arbitrary constant” in its now-known form hc/kB

To derive a distribution, rather than fit it to observations, Planck still needed an expression for the
entropy, and one which gave lower entropy at higher ν . He turned (reluctantly) to Boltzmann’s idea
S = k lnW , writing

“If E is considered to be a continuously divisible quantity, this distribution is possible in infinitely
many ways. We consider, however - this is the most essential point of the whole calculation - E to be
composed of a well-defined number of equal parts.”

The assumption that energy is quantised meant that the formula for the energy distribution law,
expressing energy density as a function of frequency ν , and temperature T , is constrained to be the
Planck Law, or something very similar.

utot =
∫

∞

0
uν(ν ,T )duν =

4σT 4

c
=
∫

∞

0
constant×ν

3
(

1
ehν/kBT −1

)
dν

The exact form required some assumptions about the quantum of energy (counting of what we now
call photons). The simplest guess, that the photon energy is proportional to frequency via “Planck’s
constant”, enabled Planck to derive the full expression, and its veracity is proved by the accurate match
to experiments.

Free Energy

Planck’s calculation of the Entropy involved quanta, but we can get it from continuum thermodynamics
via the specific heat capacity.

Cv =

(
∂U
∂T

)
V
= 4σoV T 3

with σo = 4σ/c, remembering that we’ve been using energy density, so total internal energy U = uV .
Then, taking S(T = 0) = 0, which we’ll later see is the third Law,

S =
∫ CvdT

T
=

4
3

σoV T 3

and the enthalpy is:

H =U +PV =
4
3

σoV T 4 = T S

which we already knew was true for every frequency independently.
Now if we calculate the Gibbs Free Energy for black body radiation,

G = uV −T S+PV = σoV T 4− 4
3

σoV T 4 +
1
3

σoV T 4 = 0

Which looks a bit weird. Microscopically, it means that the second law of thermodynamics allows a
black body to spontaneously create or destroy photons.

It is possible to reverse this whole chain of logic, starting with the observation that a black body to
spontaneous creates and destroys photons, which requires G = 0, and thus T S = H for photons.

Stefan’s Law

For a perfect black body we consider all incident radiation is absorbed. Consider a sphere containing
radiation at number density nν moving isotropically at speed c. The rate of photons striking a small
fraction of the surface defined by solid angle dΩ/4π depends on the normal velocity ccosθ

flux = particles sec−1area−1 =
∫

nνc cos(θ)
dΩ

4π
=
∫

φ=2π

φ=0

∫
θ=π/2

θ=0
nν c cos(θ)

sin(θ)dθdφ

4π
=

1
4

nν c
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This equation can be applied to a subset of photons with frequency between ν and ν + dν ; The
total radiation flux from a body at temperature T is then ε(T ), and is obtained by integrating over all
frequencies

Then,

ε(T ) =
c
4

∫
uνdν =

cuT 4

4
=

c
(

4σ

c

)
T 4

4
⇒ ε(T ) = σ T 4

This is Stefan’s Radiation Law, σ is a universal constant (Stefan’s constant), σ = 56.7nWm−2K−4.

Radiation flux

The flux of particles through a small orifice can be found by integrating the flux incident from the side
of interest over all incident directions. Suppose the density of particles with velocity v is n(v) is assumed
isotropic, the fraction moving in a particular solid angle is just dΩ/4π . Those incident at an angle θ to
the normal to the surface in which the orifice is located and with velocity v arrive at rate per unit area
n(v)cos(θ) at the orifice. The flux of particles with velocity v per unit area of the orifice is then given by:

flux = particles sec−1area−1 =
∫ dΩ

4π
n(v) v cos(θ)

flux =
∫

θ=π/2

θ=0

∫
φ=2π

φ=0

dφdθsin(θ)
4π

n(v) v cos(θ)

The integral over θ is easily done by substituting x = cos(θ) and noting that dx = −sin(θ)dθ giving:
flux = 1

2
∫ 0

1 −x n(v) v dx

(flux with velocity v) =
1
4

n(v) v

This equation can be applied to a subset of photons with frequency between ν and ν +dν ; The total
radiation flux is then obtained by integrating over all frequencies

(Energy flux)λ dλ =
c
4

uλ dλ ; (i.e. the energy flux depends only on the energy density)λ

Considering two equal-temperature cavities as before connected by a filter. The Second law of thermo-
dynamics tells us cannot have a net energy flow from one side to the other (no work is done) so that
c
4 uλ dλ and therefore uλ (in a vacuum) must be a universal function and depend on temperature only
(independent of cavity walls etc).

Cavity walls - emissivity - Kirchoff’s Law

Consider a small section of the wall of a cavity as the system. Consider this to be in equilibrium with
radiation at temperature T. From the second law we must conclude that the energy radiated per unit
surface over a small range of wavelengths ελ (T ) must be equal to that absorbed. Suppose that a fraction
αλ of the incident energy is absorbed, then:

ελ (T ) =
αλ cuλ (λ ,T )

4

This is Kirchoff’s law relating emissivity to the absorption coefficient of a surface. Notice that uλ (λ ,T )
is a universal function.
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Radiation from a surface not in equilibrium

The above formula for the radiation from a surface was derived assuming thermal equilibrium between
the wall and thermal radiation. However changing the radiation bathing the surface cannot change the
emission which is determined only by the properties of the surface itself (notably its temperature). There-
fore the surface continues to emit radiation at the same rate per unit surface (determined by αλ (T ) and
T ) even when not in equilibrium. This is the usual context in which the above radiation formula is used.
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