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TOPIC 2: PROCESSES (Finn: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.10, appendix B)
Synopsis: Basic properties of basic systems. Reversible processes. Mechanical work. Some

mathematics and strategy for solving problems.

States and processes

The State of a system is defined by its state variables, e.g. P, T, V. When a system is involved in a
process, the values of its state functions (variables) change. A process typically involves quantities
like Heat and Work which are not state variables.

Consider a process between equilibrium endpoints (starting point and finishing point) eg the com-
pression of gas by a piston from state (P1,V1) to state (P2, V2). For a reversible process, every
(infinitesimal) step – for both the system and its surroundings – can be reversed. If you watch a film
of the process played backwards, it would not look strange. The system goes through a sequence of
equilibrium states, which implies that a reversible process is quasistatic.

Reversible processes are quasistatic processes where no dissipative forces such as
friction are present

Reversible & irreversible processes on indicator diagrams

A reversible process can be represented by a continuous
line and arrow on an indicator diagram.
An irreversible process cannot be represented by a con-
tinuous line on an indicator diagram. Such a process may
be represented on the graph by a sequence of circles between
equilibrium states but only the end points are well-defined.
In particular if the process is not quasistatic (for example if
a piston moves too quickly, temperature and pressure gra-
dients might be set up) the values of the state variables will
not be uniform and therefore pressure and density cannot be
defined for the whole sample.
You cannot integrate with a variable that cannot be de-
fined. So the work done in an irreversible process cannot be
found by integration.
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Indicator diagram for isother-
mal compression of a gas.

Work done during a reversible change of volume of a fluid

This could be the response to a gradual change in force on a piston or to
slow heating (a change in temperature). The area A of the piston mul-
tiplied by the pressure P of the fluid balances the force F on the piston
F = PA. The fluid expands or contracts quasistatically, with the piston
moving infinitesimal distances dx much more slowly than the time the
system take to reach equilibrium at the new volume. The infinitesimal
amount of work done reversibly by the system on its surroundings is
PAdx = PdV . For a finite quasistatic change in volume from V1 to V2,
the total work done on the surroundings is:

work done on surroundings =

∫ V2

V1

PdV [reversible changes]
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The total work done depends on the process even for reversible changes

Work is the area under the graph on a PV diagram. e.g. For an
ideal gas, work done moving from equilibrium state (P1, V1, T1) to
(P2, V2, T2) depends on the process. Suppose T2 = T1 = T . For
an isothermal expansion the work done is given by nRT ln(V2/V1);
path 1–2 (isothermal) in the sketch. For path 1–3–2, a different
amount of work is done given by:

work done on surroundings =

∫ V2

V1

PdV = 0+

∫ V2

V1

P2dV = P2(V2−V1)
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Sign convention

In physics (as opposed to engineering) we are generally interested in changes of the system and therefore
consider work to be defined as the work done ON the system by its surroundings. Hence for a
reversible change of volume of a system consisting of a fluid,

d̄W = −PdV

If dV is negative, the gas is compressed and the work done on it, −PdV , is positive. Getting the right
sign for work is a source of endless problems. You should always sanity-check the sign by thinking
about the physics.

The work done on the system is always equal and opposite to the work done by the system. If the
system is undergoing an irreversible process, we can’t define the integral PsystemdV , but we might be
able to define PsurroundingsdV .

Dissipative processes

Unlike for a reversible process where we can specify d̄W = −PdV , it is not possible to specify work
done in terms of state variables of the system for dissipative processes, eg stirring. Although the
work done may be quantified, this requires knowledge of external forces. Reversing the process, via
controlling the surroundings, does not reverse the sign of the work done eg reversing the direction
of stirring does not extract energy from the system. Therefore dissipative processes ⇒ irreversible.
Irreversible processes where there is no direct dissipation (conversion of work into random motion) can
also occur eg the irreversible flow of heat between bodies at different temperatures (we will see later
that this represents a loss of potential to do work).

Some Mathematics of State Variables and Exact Differentials

Let φ be a function of x and y such that whatever the values of x and y, φ = φ(x, y) has a unique
value. An infinitesimal change dφ = (∂φ∂x )ydx + (∂φ∂y )xdy is then, by definition, an exact differential
since it is the complete differential of an exactly defined function.

Let x change from x1 to x2, and y change from y1 to y2. The finite change in φ is then ∆φ:

∆φ = φ(x2, y2)− φ(x1, y1) =

∫ x2,y2

x1,y1

dφ

So ∆φ is known exactly from the unique values of φ at the points (x1, y1) and (x2, y2), whatever the
values of x and y along the integration path. The integral is path-independent. The value of φ,
depends only on the final state.
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The defining mathematical property of a state variable is that it has exact differentials, so we can
write φ(x, y), and

∂2φ

∂x∂y
=

∂2φ

∂y∂x

i.e. the second derivative is independent of the order of differentiation
For a system whose state f is described by n independent variables f(x1, x2, . . . , xn) we have:

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

State variables in thermodynamics have path-independent integrals.

This is an incredibly useful result. If we want to know the change in a state variable due to some
process, we can find it by considering any other process between the same start and end point. So we
can choose a process which gives us an easy integral to solve.

Inexact differentials

Re-working the above argument backwards, suppose that the integral of some differential form d̄ φ is
path-dependent. Then the integral cannot be expressed as the difference of a function φ evaluated at
the specified limits of the integration. Work dW = PdV is like this, it can not be a state function. An
infinitesimal change in W is therefore an inexact differential and is written d̄W (the bar indicating an
inexact differential quantity).

So we have to be careful, because

Processes in thermodynamics typically have path-dependent integrals.

and worse..

Irreversible processes in thermodynamics cannot be described by integrals.

Work is not a state function!

Consider work, defined by d̄ W=-PdV.
If work were an exact derivative, there must be a function W(P,V) such that:

dw =
(∂W
∂P

)
V
dP +

(∂W
∂V

)
P
dV (1)

From the definition, we see (∂W∂P )V is zero while (∂W/∂V )P = −P . Differentiating again gives :

∂

dV

((∂W
∂P

)
V

)
P

= 0 (2)

∂

dP

((∂W
∂V

)
P

)
V

= −1 (3)

Clearly d̄W is not an exact differential, and no state function with total derivative d̄W can exist. To
find the finite work done going between two states, (∆W =

∫
d̄W ) we must specify the path, i.e. the

trajectory of (P, V ) on the indicator diagram.
In general if we have a differential quantity dc ≡ Ada + Bdb and we want to know whether the

integration of this function between two point (a1, b1) and (a2, b2) depends upon the path the necessary
and sufficient condition for the result to be path independent is :(∂A

∂b

)
a

=
(∂B
∂a

)
b

(4)

If this condition is satisfied the integral is the difference between the values of a state function c(a, b)
at the two end points. If not satisfied the symbol d̄ c should be used and the path of integration has
to be specified.
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Two useful tricks - Reciprocal & Cyclic rules

Suppose we have a function z(x, y). Then we can write,

dz =
(∂z
∂x

)
y
dx+

(∂z
∂y

)
x
dy and similarly, dx =

(∂x
∂y

)
z
dy +

(∂x
∂z

)
y
dz (5)

Substituting one into the other gives{
1−

(∂x
∂z

)
y

(∂z
∂x

)
y

}
dz =

{(∂z
∂x

)
y

(∂x
∂y

)
z

+
(∂z
∂y

)
x

}
dy (6)

But dy & dz are independent and arbitrary. Therefore both coefficients must be zero, giving

reciprocal rule:
1(
∂z
∂x

)
y

=
(∂x
∂z

)
y

cyclic rule:
(∂z
∂y

)
x

= −
(∂z
∂x

)
y

(∂x
∂y

)
z

(7)

The above equations also work when there are more variables; the extra variables are just held constant
in all the derivatives. The reciprocal rule is quite intuitive. The cyclic rule warns us of the danger
of dropping from the notation the symbols showing which variables are held constant. We might be
tempted to ‘cancel’ ∂x from both numerator and denominator on the RHS of EQN 7, but this is only
allowed if the same variables are held constant in both functions, which is not the case.

Example

Question: The state of a compressible fluid is changed reversibly and infinitesimally from
(P, T ) to (P + ∆P, T + ∆T ). How much does the volume change ?

First, write the problem as an integral in the form that gives the state function whose change we
wish to find, as a differential in terms of the state variables whose changes are given

V = V (P, T ) =⇒ dV =

(
∂V

∂P

)
T

dP +

(
∂V

∂T

)
P

dT

Next, identify the partial derivatives. e.g. the volume thermal expansivity β and isothermal bulk
modulus are defined in differential form as,

β =
1

V

(
∂V

∂T

)
P

; K = −V
(
∂P

∂V

)
T

So, expressing the differentials in terms of standard definitions of properties,

∆V =

∫
dV = −

∫
V

K
dP +

∫
βV dT

In general, K and β depend on the material, but lets suppose they are constants. Because V = V (T, P )
is a state variable, we can do the integral along any path. For simplicity, choose a reversible two-stage
path which first goes isothermally from P to P + ∆P , then isobarically from T to T + ∆T .

For stage 1, dT = 0, and let V → V1. We can rearrange to get∫
1

V
dV = −

∫
1

K
dP =⇒ ln(V1/V ) = −∆P/K

For stage 2, dP = 0 and volume goes from V1 → V + ∆V∫
1

V
dV =

∫
βdT =⇒ ln((V + ∆V )/V1) = β∆T

Cancelling the V1 for the total change and rearranging we have:

V + ∆V = V exp(−∆P/K) exp(β∆T )

Note that had we done the isobaric process before the isothermal one, the answer would have come
out the same. If we had considered an irreversible path, the answer would still be the same even though
the integral isn’t defined for an irreversible process.
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