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Lecture TOPIC 3 (Finn: 3.1, 3.2, 3.3, 3.4, 3.6)

Synopsis: Heat, work, Internal energy, heat capacities and the First Law: ∆U = ∆Q+ ∆W .

FIRST LAW OF THERMODYNAMICS: Conservation of Energy

Clausius: In all cases in which work is produced by the agency of heat, a quantity
of heat is consumed which is proportional to the work done; and conversely, by the
expenditure of an equal quantity of work an equal quantity of heat is produced.

INTERNAL ENERGY

Joule’s experiments (1840-1849) confirmed the measurements of Benjamin Thompson (Count
Rumford) that heat could be produced by mechanical work alone. Joule produced work from
falling weights suspended over pulleys attached to paddles in a thermally insulated tub of water.
For a given mass of water, the same amount of work was always needed to produce a one degree
rise in temperature. This was the mechanical equivalent of heat: 4.2 × 103 J kg−1 K−1 in
SI units. The same value was found from dissipation of energy in a current-carrying resistor
(‘immersion heater’) for which the source of energy could also be traced back to mechanical
generation with a ‘dynamo’. These experiments illustrate a general principle:

If a thermally ISOLATED system is brought from one equilibrium state to another,
the work necessary to achieve this change is independent of the process used.

The above observation suggests that there is a state function U , the internal energy, for which
U2−U1 = Wadiabatic = work done adiabatically to make the change between initial (1) and final
(2) equilibrium states. This is a restricted form of the First Law of Thermodynamics.

EQUIVALENT PROCESSES

We can apply the main postulate and the zeroeth law to calculate the final temperature when
cold ice is dropped into hot water. The equilibrium state has equal temperature throughout,
and because temperature is a state variable, we can use any process to calculate it. We do not
need to worry about how it happens.

• The water cools to 0◦.

• The ice warms to 0◦.

• The ice melts.

• Everything warms up again.

We implicitly assume that the energy of these heat flows go into some unspecified storage
reservoir. Then, the sum of them is put back into the system to warm the water back up from
0◦ to its final temperature, or refreeze some ice. In reality, there is no storage reservoir: this is
an example of using an equivalent process to make a thermodynamic problem mathematically
tractible. It is legitimate because temperature and internal energy are state variables.
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HEAT

More generally, if system is not thermally isolated, W 6= U2 − U1 (topic 03). This can be taken
into account by writing U2 − U1 = W + Q, where Q is the energy transfer which cannot be
accounted for in terms of work, defined so that Q is positive for heat going INTO the system:

Heat is the exchange of energy between the system and the surroundings that cannot
be identified as work (eg mechanical work).

Illustration of the difference between WORK and HEAT

In the left image below the electrical heating element is included in the system and energy is
supplied as work (I.V ) whereas in the right image the heating element is outside the system
and energy is supplied as heat.

This leads to the general
statement of the First Law
of Thermodynamics, for in-
finitesimal changes: dU =
d̄W + d̄Q, where both d̄W
and d̄Q are path-dependent.
For a compressible fluid, the

statement of the First Law for
infinitesimal reversible pro-
cesses is:
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dU = −PdV + d̄Q

THE HEAT CAPACITY (C) OF A SYSTEM

Definition

C =
Heat in

Temperature rise
= lim

∆T→0

(
Q

∆T

)
=
dQ

dT

Specific heat capacity is c = 1
mC, where m is the mass of the system. Molar heat capacity often

also called the “molar specific heat capacity” is often denoted by the same symbol: c = 1
nC,

where n is the number of moles of molecules in the system.)

Heat capacity at constant volume, CV

For V = constant, dV = 0 and First Law gives dUV = 0 + dQV , from which

CV =
dQV
dT

=
dUV
dT

=

(
∂U

∂T

)
V

partial derivative since U might depend on more than just temperature T .
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Heat capacity at constant pressure, CP

The First Law now gives dQP 6= dUP , because V will change (dV 6= 0) and work is done.
However, for P = constant, it is convenient to define Enthalpy: H = U + PV

dHP= d(U+PV) = dU + PdV + VdP = −PdV + dQP + PdV = dQP
So

CP =
dQP
dT

=
dHP

dT
=

(
∂H

∂T

)
P

H = U + PV (with the units of energy) is a useful function for treatment of constant
pressure processes and more generally to describe changes where the pressures of the initial and
final states are known.

Notice that Heat Capacity is a State Variable (unlike Heat).

Relation between Cp and CV

Cp − CV for an ideal gas

The energy of n moles of an ideal gas is n3
2NAkBT , where NA is Avogadro’s number and kB is

Boltzmann’s constant. So for an ideal gas U is a function of T only: U = U(T ). Then writing
U = U(T, V ),

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV

dU =

(
∂U

∂T

)
V

dT Ideal gas only

dU = CV dT Ideal gas only

That means that dU may be replaced by CV dT in subsequent analysis for an ideal gas. Thus,
using the First Law (dQ = dU + pdV ),

Cp =
dQP
dT

= CV + P

(
∂V

∂T

)
P

= CV + nR Ideal gas only

Cp − CV for any fluid

Cp =

(
∂H

∂T

)
P

=

(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

(1)

We want to express (∂U/∂T )P in terms of Cv = (∂U/∂T )V . Therefore use U(T,V):

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV

⇒
(
∂U

∂T

)
P

=

(
∂U

∂T

)
V

+

(
∂U

∂V

)
T

(
∂V

∂T

)
P

= Cv +

(
∂U

∂V

)
T

(
∂V

∂T

)
P

Substituting this in EQN 1 gives,

Cp − CV =

(
P +

(
∂U

∂V

)
T

)(
∂V

∂T

)
P

,

which is our final general result. The relation for an Ideal gas can be recovered noting
(
∂U
∂V

)
T

= 0

and calculating
(
∂V
∂T

)
P

from the ideal gas equation of state PV = nRT .
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WORK

Reversible Isothermal Expansion of an Ideal gas (No temperature change)

The equation of state PV = nRT gives P = nRT/V = constant/V with different values of
the constant for different temperatures (ie a family of hyperbolae). The work done on the
surroundings by a system comprising n moles of ideal gas expanding reversibly and isothermally
is equal to nRT ln(V2/V1).

Reversible Adiabatic Expansion of an Ideal gas (No heat transfer)

For a reversible process, P is well defined and so we can
write d̄W as an integral −

∫
PdV . The First Law gives

d̄Q = dU + PdV = CV dT + PdV .
Adiabatic means d̄Q = 0. So −PdV = CV dT .
Then substitute for P from the ideal gas equation,

giving (nR/V )dV = (Cv/T )dT . Finally integrate both
sides and use CP − Cv = nR to obtain

TV γ−1 = a constant, where γ = CP /CV

The equation describes the variation of T with V in a
reversible adiabatic process. Alternative equations (use the ideal gas equation to derive them)
are:

PV γ= a different constant
TP

1− 1
γ = yet another constant

For a reversible adiabatic expansion, from (Pi, Vi) to (Pf , Vf ), the work done on an ideal gas,
by its surroundings is d̄W = −

∫
PdV =

∫
CV dT = CV (Tf − Ti).

For an irreversible process, this expression for work is not true because pressure of the gas
is not well defined, so nor is the integral for work

∫
PdV . BUT the change in internal energy

∆U = CV (Tf − Ti) is correct because U , CV and T are all state variables.

Irreversible Adiabatic Expansion and Free Expansion (Joule) Coefficient

Consider a container with rigid adiabatic outside walls. An inner
rigid partition divides the container into two equal volumes V with
gas initially occupying only one of the volumes and a vacuum in the
other. The system is the combination of gas plus vacuum inside the
outer wall. The partition is then broken and the gas moves irre-
versibly, into the vacuum, until the two halves each contain the
same amount of gas. The system does no work on its surroundings,
and no heat enters the system from its surroundings. Therefore the
final internal energy of the gas, has to be equal to the initial value.
To find the change in temperature, write T = T (U, V ). Then

dT =

(
∂T

∂V

)
U

dV +

(
∂T

∂U

)
V

dU =

(
∂T

∂V

)
U

dV = µJdV
gas everywhere
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µJ is the Joule coefficient, whose value depends on the gas being used, and can be predicted
from the gas’s equation of state. For a free expansion of a gas from Vi to Vf , the temperature

change can be calculated from ∆T =
∫ Vf
Vi
µJdV .

For an ideal gas, internal energy depends only on temperature (U=U(T)) and vice versa
(T=T(U)), µJ = 0, so the final temperature will be the same as the initial temperature.

For a real gas, intermolecular forces depend on how far apart the molecules are, so U is a
function of both T and V .
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