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Synopsis: Cyclic processes: Carnot cycle; heat engines. The Second Law of Thermodynamics. Time.
Carnot’s Theorem.

Cyclic processes - introduction to the Carnot cycle and engine

A reversible cyclic process is one where the cycled system returns to its initial (equilibrium) state on the
completion of each cycle with all processes quasi-static and reversible. During the cycle the values of the
state variables change, with the system exchanging heat as well as mechanical energy with its surroundings.
The simplest reversible cycle is the Carnot cycle comprising sequentially isothermal expansion, adiabatic
expansion, isothermal compression, and adiabatic compression. This is particularly simple because heat is
only exchanged along the two isotherms. In the sketch (which is for a system consisting of an ideal gas) the
net work done is represented by the area inside the closed curve. The Carnot cycle is useful for illustrating
general principles and describing heat engines, heat pumps and refrigerators. We will analyse a single cycle,
but note that engine power depends on the number of cycles/sec. Isothermal processes tend to be slow, so
the Carnot cycle is not useful for practical engines.

The Carnot cycle and engine

The four-stage Carnot cycle is shown. Any fluid known as
the working substance may be taken around the cycle.
The surroundings consist of two constant temperature heat
reservoirs, one at T1 and the other at T2 < T1, and some
means (such as pistons) to allow the exchange of mechan-
ical energy with other devices. The system and surround-
ings comprise the hypothetical Carnot engine. It operates
reversibly between the two heat reservoirs, with, in each cy-
cle, heat Q1 entering at T1, Q2 leaving at T2 and work W
being delivered. If the working substance is not an ideal gas,
the shapes of the isotherms and adiabatics will be (slightly)
different from those shown.

The efficiency of a heat engine
A generalised engine is illustrated schematically opposite. This
engine still operates in cycles, with its working substance always
returning to the same thermodynamic state at the end of each cy-
cle. Thermodynamic efficiency analysis is done in work/heat per
cycle: in reality the power produced is often more important:

Power = Work per cycle × cycles per second

Q1, Q2 and W are heat supplied to, heat rejected by and work
done by the working substance. The work done on the working
substance is −W , and the First Law takes the form ∆U = Q1 −
Q2 +(−W ) = 0 for each complete cycle. From this, W = Q1−Q2,
and the efficiency η of the engine is defined by

η = W/Q1 = 1−Q2/Q1
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The Second Law of Thermodynamics

The Second Law puts restrictions on which processes may occur, or more particularly which processes can
never occur even though they are energetically possible. The properties of heat engines provide the imagery
to help visualise which processes are not allowable. There are two statements of the second law that you
need to know, one due to Clausius, and the other due to Kelvin modified by Planck. In contemporary
language, these are:

The Clausius statement:

It is impossible to construct a device that,
operating in a cycle, produces no effect other
than the transfer of heat from a colder to a
hotter body.

The “R” on the diagram of the forbidden
device, denotes “refrigerator”.

The Kelvin-Planck statement

It is impossible to construct a device that,
operating in a cycle, produces no effect other
than the extraction of heat from a single body
at a uniform temperature and the perfor-
mance of an equivalent amount of work.

The “E” on the diagram of the forbidden device,
denotes “engine”.
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Note the use of body rather than heat reservoir, meaning that engines can be considered to operate
between two bodies (one a source and the other a sink of heat) of which the hotter one cools and the colder
one heats up whilst the engine is running.

The equivalence of the Clausius and the Kelvin-Planck statements

This is traditionally proved by showing that if either statement is false, so is the other.

Suppose Kelvin-Planck’s statement
is false. Then an engine (E) can
drive a refrigerator (R), as sketched
opposite, where W (equal to Q1from
the 1st law applied to E) is just suf-
ficient to operate one cycle of R. If
R extracts Q2 from the cold body,
it will deliver heat Q1 +Q2 (1st law
applied to R) to the hot body, each
cycle. E+R can be treated as a com-
posite refrigerator, whose only effect
is to transfer heat Q2 from a colder
to a hotter body, requiring Clau-
sius’s statement to also be false.
(The similar proof that if Clausius’s
statement is false so too is Kelvin’s
is left as an exercise).
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Carnot’s theorem and a corollary

These are preliminaries to deducing the existence of a new state function, entropy.
Carnot’s Theorem is

No engine operating between two reservoirs can be more efficient than
a Carnot engine operating between the same two reservoirs.

To prove this we will examine how the efficiency of a hypothetical engine E′ is restricted by Clausius’s
statement of the 2nd law.
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Let the hypothetical engine E′ (efficiency η′) and a Carnot engine C (efficiency ηC) operate between
the same heat reservoirs at temperatures T1 and T2 < T1; sketch (A) above. All stages of the Carnot
engine are reversible, so it can be driven backwards. If the engines are adjusted so that W ′ = |W |, then,
assuming η′ > η, W ′/Q′

1 = W/Q′
1 > W/Q1 leads to Q1 > Q′

1. That means (see diagrams) that the
composite device (sketch (B))would act as a refrigerator which each cycle extracts heat Q1 − Q′

1 from the
lower temperature reservoir and delivers exactly the same heat to the higher temperature reservoir without
exchanging mechanical work with any other device. This contradicts Clausius’s statment of the 2nd law, so
the assumption η′ > ηC cannot be valid. It is necessary to consider also the possibility η′ = ηC , for which,
from the diagram, Q′

1 = Q1. The composite device achieves nothing: heat flows are zero and there is no
work exchanged. The conclusion is that the efficiency η for any real engine must therefore satisfy

η ≤ ηC

The corollary follows: make the composite device from two Carnot engines, Ca and Cb, with the first
one, efficiency ηca driving the second one, efficiency ηcb , backwards. Carnot’s Theorem leads to ηca ≤ ηcb .
However, for Cb driving Ca backwards, ηcb ≤ ηca . The only option is ηca = ηcb , hence the corollary:

All Carnot engines operating between the same two reservoirs have the
same efficiency (INDEPENDENT of the working substance).
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Another Corollary: Unification of Temperature Definitions

We have shown that the thermodynamic efficiency of all reversible heat engines operating between the same
two temperature reservoirs is equal (independent of the choice of working substance or process). This ef-
ficiency, η = 1 − Q2

Q1
, can therefore only depend on the temperature of the reservoirs. The ratio Q1/Q2 is

therefore some universal function f of T1 and T2: Q1/Q2 = f(T1, T2). We can say more about the functional
form of f by considering the following:
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Consider two reversible engines as shown (any
working substance). Per cycle, the first re-
moves heat from reservoir at T1 and rejects
heat at T2 doing work W1. The size and
rate of the processes of the second engine are
scaled so that it is synchronised with the first
engine removing heat Q′

2 = Q2 per cycle from
the reservoir at T2 doing some work W2 and
rejecting heat Q3 to a reservoir at T3 with
T1 > T2 > T3.

For this arrangement the heat entering and
leaving the reservoir at T2 balance and so no
reservoir is in fact required. The overall pro-
cess is thus equivalent to the composite engine
shown on the right of the figure. For the two
individual engines:

Q1

Q2
= f(T1, T2) (1)

Q2

Q3
= f(T2, T3) (2)

While for the composite
Q1

Q3
= f(T1, T3) (3)

with f the same universal function in all 3 expressions. Multiplying EQN 1 by EQN 2, Q2 cancels giving
an expression for Q1/Q3 that can be compared with EQN 3:

Q1

Q3
= f(T1, T2).f(T2, T3) = f(T1, T3)

The only way the boxed expression can be satisfied is if the function f factorises,

f(T1, T2) =
θ(T1)

θ(T2)

with θ(T ) a universal function of temperature for a given choice of temperature scale. We have thus found
a ‘natural’ temperature scale, θ, that can be expressed as a function of our arbitrary practical temperature
scale.

Remarkably, the ’temperature’ which determines engine efficiency, is the same as the one which deter-
mines direction of heat flow, and the one in the ideal gas equation, and the one in kinetic theory of gasses,
and the one in statistical mechanics. If system A has higher temperature than system B according to one
definition, then A will have higher temperature than B according to all definitions.
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