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Lecture TOPIC 6 (Finn: 5.1, 5.2, 5.3, 5.5)

Synopsis: The Clausius inequality. Entropy, and principle of increase in entropy.

INTRODUCTION TO THE THERMODYNAMIC FUNCTION ENTROPY

The Clausius inequality

This considers the heat transfers to a substance as it is taken round an arbitrary cyclic process
exchanging heat with any number of surrounding bodies. It can be derived by breaking down
the process into equivalent interactions with a large number of Carnot engines and refrigerators.

Heat exchange with 3 bodies

We look at this procedure for a system exchang-
ing heat with 3 different bodies (diagram) and
then generalise the result. Consider two Carnot
refrigerators A and B and an Engine. The refrig-
erators are adjusted to exactly the same amount
of heat to their hot reservoirs as is taken from
those reservoirs by the Engine: (Q1 = Q1A;
Q2 = Q2A) No such restriction can be put on the
heat transfers to and from the cold reservoir and
therefore heat flowing from it is Q0A+Q0B−Q0.
(We’ll see later that this is negative)
Now consider the complete ensemble as a com-
posite system with the Engine driving the re-
frigerators. The net work done by the composite
system is W − (WA +WB).
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No net heat flows into/out of the hot reservoirs. The balance of heat flow and mechanical
work for the composite system is (Q0A +Q0B)−Q0 = W − (WA +WB) (1st Law). Since the
heat flow is from a single reservoir, the Kelvin-Planck statement of the Second Law would be
contradicted if W > WA+WB. Therefore we must have W ≤WA+WB and Q0A+Q0B−Q0 ≤ 0

From the Carnot refrigerator efficiencies we have, Q1A
Q0A

= T1
T0

from which Q0A = Q1× T0
T1

, and

similarly Q0B = Q2 × T0
T2

. Thus in terms of the heat entering the cold reservoir,

Q0 −Q0A −Q0B = Q0 −
(
Q1

T1
+
Q2

T2

)
T0 ≥ 0→ Q1

T1
+
Q2

T2
− Q0

T0
≤ 0

So far we considered heat flows Qi around a system of engines and refrigerators. Now consider
heat inputs qi to the working substance of the engine. The engine absorbs heat q1 = Q1

from the hot reservoirs, and returns heat to the cold reservoir, so there is a change of sign:
q0 = −Q0.

q0

T0
+
q1

T1
+
q2

T2
≤ 0
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The above argument can be generalised and refined as follows.

1. If the number of engines and refrigerators is arbitrary,∑
i

qi
Ti
≤ 0

Note that the Ti are the temperatures of the reservoirs with which heat is exchanged
rather, not the temperature of the system.

2. In the limit where the amounts of heat entering the working substance are very small at
each step, but the number of steps is very large, the summation may be replaced by an
integral: ∮

d̄ q

T
≤ 0, Clausius inequality

Note that T is still the temperature of the reservoirs, which may or may not be equal to
that of the system.

3. Reversible cycles. For the special case where the device operates entirely reversibly,
Tsystem = Treservoirs during each heat exchange. Since all processes can also be reversed,

an equivalent conclusion is
∮ d̄ q

T ≥ 0

For both inequalities to be valid simultaneously, they must be restricted to the “=” case,
so for reversible cycles, ∮

d̄ qR
T

= 0, reversible cycle only

Note in this last expression T is also the temperature of the system.

Entropy - a new state variable

Consider a system performing a reversible
cycle from initial state i to an intermediate state
f then back to i, as shown in the indicator di-
agram (think of it as a sample of gas). Since
the cycle is reversible the equality sign in the
Clausius inequality applies giving,∫

d̄ qR
T

=

∫ f

i

d̄ qR
T

+

∫ i

f

d̄ qR
T

= 0

from which∫ f

i|path 1

d̄ qR
T

=

∫ f

i|path 2

d̄ qR
T

.

Because the value of the integral is path-independent, d̄ qR
T is an exact differential of some state

function, we call it call entropy S:

∫ f

i

d̄ qR
T

=

∫ f

i
dS = Sf − Si = ∆S
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The Principle of Increasing Entropy

Now reconsider the existence proof for entropy if one part (i to f) is irreversible.

The Clausius inequality leads to
∫ f

i
d̄ q
T
+
∫ i

f
d̄ qR
T
≤ 0

from which
∫ f
i
d̄ q
T ≤

∫ f
i
d̄ qR
T = Sf − Si

(note the change in sign when inverting the limits on the integral).

This means that in an irreversible process, the change in entropy,
Sf − Si, is greater than the integration of infinitesimal contributions:

(“heat supplied from the surroundings”) /
(“temperature of the contributing part of the surroundings”).

Also, consider heat being measured by the heat capacity. If the heat capacity was negative
all the signs would change and the entropy would decrease. This doesn’t happen: the Second
Law requires heat capacities to be positive.

Changes of entropy of thermally isolated systems in adiabatic processes

When a system is thermally isolated no heat is exchanged with the surroundings. Then for an
irreversible process undergone by a thermally isolated system

dS > 0 (→ Sf − Si = ∆S > 0 for a finite process)

It also follows that for a finite reversible adiabatic process ∆S = 0.

The entropy of a thermally isolated system increases in any irreversible process and
is unaltered in a reversible process. This is the principle of increasing entropy.

Example calculation of an entropy change

A sample of water at 20◦C is placed in thermal contact with a heat reservoir at 100◦C. The
sample, of heat capacity CP , is thereby heated irreversibly at constant pressure from its initial
equilibrium state at 20◦C to a final equilibrium state at 100◦C. What is the entropy change?

Define the system to be the water. Consider an alternative re-
versible process, between its initial and final equilibrium states.

Specifically, use as the “surroundings” a series of a large num-
ber of heat reservoirs each at a infinitesimally higher temperature
T+deltaT than the one before it, starting at Ti and ending at Tf .
Each stage in this alternative process is a reversible transfer of
heat CPdT from a reservoir at the same temperature as the water
at that stage. The change in entropy of the water is CPdT/T , and
the change in entropy of the reservoir is −CPdT/T . Integrating
over the complete process, ∆SSystem = CP ln 373

293 = CP ×0.24141.
Since entropy is a state variable, this is the same as the change in
entropy for the irreversible process between equilibrium states.

Now calculate the change in entropy ∆SSurr of the actual
surroundings. This consists of a reservoir at 100◦C which delivers
the same amount of heat CP (373 − 293) = 80CP as arrives in
the water. In the alternative, reversible process this is done
by transfer to an imaginary reservoir at 373 − δT . The change
in entropy of the surroundings is thus −CP (373 − 293)/373 =
−CP × 0.21448.
n.b. total entropy increases: ∆SSys + ∆SSurr = 0.02693CP > 0
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Summary of Laws

Main Postulate ⇒ Isolated systems tend to equilibrium for which state variables exist

Irreversibility ⇒ State variables do not exist during irreversible processes

0th Law ⇒ Temperature defines Thermal Equilibrium; TEquilibrium = TIdealGas = TCarnot

1st Law ⇒ Energy is conserved; ∆U = ∆Q+ ∆W

2nd Law ⇒ Entropy of System + Surroundings cannot decrease;

Third Law ⇒ (not covered yet) Absolute zero T and S exist

Key Corrolaries

Equilibrium ⇒ Nonequilibrium systems exist.

Work, Heat ⇒ Integrals are Path Dependent

Clausius ⇒ Heat can’t flow from cold to hot

Kelvin-Planck ⇒ Cannot convert all heat energy to work

Carnot ⇒ Most efficient possible engine has η = 1− Tcold/Thot

Clausius Inequality ⇒ Heat flow into a system:
∮ dQ

T < 0

Clausius Equality ⇒ State variable Entropy exists for system ; ∆S =
∫ dQ

T

State Function ⇒ Can be calculated by integration along any path;
∮
dX = 0

Time ⇒ Defined by direction of increase in Entropy

Some notes about integrals

Often we break partial differentials in order to integrate them. There’s no standard notation
for the “path dependent” integral, here I use dVT to indicate that the integral is along a path
of constant T . For example given the ideal gas relation:(

∂P

∂V

)
T

= −RT/V 2

∫
dPT = −RT

∫
dVT /V

2 =⇒ P = RT/V + f(T )

We can do these integrals because T is constant, but it also means that if we have an indefinite
integral the constant of integration can be T-dependent. n.b. for the ideal gas, f(T ) turns out
to be zero, but that’s not generally true.

By contrast
(
∂P
∂V

)
S

= f0(T, V ) is much more troublesome, because T isn’t constant and isn’t
an independent variable. Before integrating we would need to use the equation of state in the
form T(S,V) to eliminate T.
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