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Lecture TOPIC 7 (Finn: 5.6, 5.8, 5.9, 5.10)
Synopsis: The Second Law of Thermodynamics (review) and the Central Equation of Thermodynamics.
Entropy of an ideal gas. Entropy, probability and disorder.

The Principle of Increasing Entropy: corollary

Imagine the system of interest plus its surroundings to be enclosed by an adiabatic wall (e.g. a small
system and a large but finite volume of surrounding whose T,P will remain essentially unchanged). Then
for the ensemble d̄ q = 0⇒ ∆S≥ 0.

The entropy of a thermally isolated ensemble comprising the system plus surroundings can never decrease.

This will be used later to examine conditions for equilibrium in system with various boundary conditions
(surroundings).

The Central Equation of Thermodynamics

This combines the first and second laws for infinitesimal reversible processes in differential form:

dU = d̄ Q+ d̄ W → dU = TdS - PdV

Although valid only if both T and P are well defined (reversible processes) it involves only state
variables. It always be integrated along any path to calculate changes of state variables, even when
those changes occur via irreversible processes. This trick uses the path-independence to replace the actual
irreversible path with an equivalent reversible path along which the integrals can be done. Choosing a
path to make the integrals easy is an important skill. Owing to its usefulness and generality it is called
the central equation of thermodynamics and is also usefully written:

T dS = dU +PdV or T ds = du+Pdv.

Using either extensive or intensive quantities.
If applied to a system which is not a simple fluid, the equation has to be augmented to allow for other

variables. For electric charge (denoted by Z, avoiding confusion with heat) driven through a system
by an emf (E , to avoid confusion with V), the equation becomes dU = T dS− PdV + E dZ. For a
one dimensional system like a rubber band under tension F , changes in length L dominate, so the the
equation becomes dU = T dS+FdL.

Entropy of an ideal gas ; a problem

For an Ideal gas u = u(T ), so that du = cvdT . The central equation for the molar entropy ds then gives:

ds = cv
dT
T

+R
dv
v

where the Ideal gas equation has been used to re-express the second term. Integrating the above gives:

s = cv lnT/T0 +R lnv/v0 + s0

= cP lnT/T0−R lnP/P0 + s0
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The “problem” is that as T or P go to zero, the entropy becomes infinite.
The constant of integration is written as s0−cv lnT0+R lnv0 to emphasize that this is entropy relative

to a particular reference state, and that choosing T0 = 0 and P0 = 0 is problematic. This is the fundamental
reason why chemists relate things to “Standard Temperature and Pressure” (STP= 273.15 K, 101.3kPa)

In a Joule, or “free” expansion of an ideal gas, U does not change, nor therefore does T . However,
because v changes, there must be a change in entropy s. For 1 mole of ideal gas, the change in entropy
during a free expansion is:

s f − si = cv lnTf +R lnv f + s0− (cv lnTi +R lnvi + s0) = R ln
v f

vi

An example, “heating water on a stove”

Question: Calculate the change in entropy of water heated from 20oC to 100oC on a stove.

method 1: as per topic 06. A reversible path is constructed involving a series of heat baths between
initial and final temperatures Ti and Tf with the water brought into contact with each bath in turn. The
thermodynamic definition of entropy relates changes of entropy to reversible heat transfers, which can
be applied along this alternative path between Ti and Tf :

∆S =
∫ Tf

Ti

d̄ qR

T
=
∫ Tf

Ti

CpdT
T

The change of entropy of the water is the same as in the irreversible process that actually occurs since
entropy is a state function and the initial and final equilibrium states match.

method 2: Brute force solution applying the central equation:

∆S =
∫ f

i

dU
T

+
∫ f

i

p
T

dV

We know only Ti and Tf and pi = p f , but not Ui and U f or Vi and Vf . Therefore we need to expand dU
and dV in terms of {p,T}.

∆S =
∫ f

i

(
∂U
∂T

)
p
dT +

(
∂U
∂ p

)
T

d p

T
+
∫ f

i

p
T

[(
∂V
∂T

)
p
dT +

(
∂V
∂ p

)
T

d p
]

The pot is open to atmosphere, so the natural choice of path is isobaric p = pi = p f for which d p = 0.

∆S =
∫ Tf

Ti

(
∂U
∂T

)
p
+ p
(

∂V
∂T

)
p

T
dT =

∫ Tf

Ti

(
∂ (U+pV )

∂T

)
p

T
dT =

∫ Tf

Ti

(
∂H
∂T

)
p

T
dT =

∫ Tf

Ti

Cp

T
dT

method 3: The water is heated at constant pressure so it is likely to be more convenient to work with
H=U+PV rather than U, which combined with the central equation gives

dH = dU + pdV +V d p = (T dS− pdV )+ pdV +V d p = T dS+V d p

⇒ dH = T dS+V d p

The above is an equivalent form of the central equation. We can integrate this choosing the path p=const
to get ∫

p=const
dS =

∫
p=const

dH
T

Writing H =H(T,P)⇒ dH =
(

∂H
∂T

)
p
dT +

(
∂H
∂ p

)
T

d p=CpdT +
(

∂H
∂ p

)
T

d p. Thus along the path p=const

dH|p =CpdT

⇒ ∆S =
∫ Tf

Ti

Cp

T
dT as found previously.

In methods (2) & (3) we have not to had to think explicitly about an equivalent reversible path for the
irreversible process as done in method (1). The central equation deals with this implicitly.
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Another example, “electrical work”

Consider a current I flowing through a resistor R. The power delivered is E I = I2R. Suppose the resistor,
regarded as the system, completely fills a box with adiabatic walls. The power is dissipated irreversibly
in the resistor, which therefore heats up.

From the 1st law the change in internal energy of the system in time interval ∆t is ∆U = (q= 0)+w=
I2R∆t (assuming the volume is fixed so that no mechanical work is done). We can relate changes of
U to changes of temperature for a constant volume process with dU = CV dT |V const. The change in
temperature is then:

I2R∆t =
∫ Tf

Ti

CV dT =CV ∆T

where the last equality follows if CV can be approximated as constant (independent of temperature)
⇒ ∆T = I2R∆t/CV .

What is the change of entropy?
method 2 The change of entropy can be calculated with the central equation dS = dU/T |V const⇒ dS =

CV dT/T |V const⇒ ∆S =
∫ Tf

Ti

CV
T dT with Tf calculated above.

method 1 The same answer can be found by thinking of a reversible process leading to the same change
of state variables between the initial and final equilibrium states, in this case a change of temperature
∆T . This could be achieved by putting the resistor successively in thermal contact with a sequence of
heat reservoirs, starting with one at Ti and ending with one at Tf giving:

∆S =
∫ Tf

Ti

d̄ qR/T =
∫ Tf

Ti

CvdT/T

ie we have considered an alternative process where heat enters the system reversibly but no work of any
kind is done.

The connection between Entropy, Counting, and Probability

a preview of subject matter to be developed in next term’s statistical mechanics course

gas everywhere
2V

gas vacuum
V V

break
partition

partition




�
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The Second Law means that the total entropy of an iso-
lated system must increase and is maximised at equilibrium.
In statistical physics we expect a system to change from a
less probable initial state to a more probable final state. This
implies a relationship between probability and entropy.

As an example, reconsider the Joule expansion of a large
number of atoms, N, of an ideal gas. Initially, all the gas is
on the left hand side of the container, whereas in the final
state the gas has an equal density everywhere.

Using the Central Equation, remembering that ∆U = 0
in the free expansion of an ideal gas, this gives:

∆S =
∫

dS =
∫ PdV

T =
∫ nRdV

V = nR ln Vf
Vi

= nR ln2

To relate this to probabilities, denote the left hand side of the container by A and the right hand side
by B with VA = VB = V . A long time after the partition has been removed and assuming the system is
free to explore all possible states available to it (respecting energy conservation), the probability that any
one molecule is in A is 1/2. The probability of finding the system in its initial state a long time after the
wall has been removed (i.e. the molecules in A) is (1/2)N .

Now, define a microstate as a fully specified set of momenta and positions for all molecules. Denote
the total number of possible microstates available with energy E and all the particles in A, to be ΩA ≡
Ω(N,VA,E). Notice that for Ω to be countable number, momenta and position states must be quantised.

Similarly, denote the total number of states with energy E, N particles, and volume VA +VB with
the particles located anywhere within volume VA +VB as ΩA+B ≡ Ω(N,VA+B,E). Assuming that all the
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accessible microstates are equally likely,

ΩA

ΩA+B
=

Ω(N,V,E)
Ω(N,2V,E)

=
(1

2

)N
(1)

Suppose that there is a relationship between the entropy and the number, Ω, of microstates available;
S = f (Ω) where f is a function to be determined. Entropy is extensive, so if we consider twice as much
gas, we should have twice as much entropy, whereas the total number of microstates available grows
much faster, as the product Ω1Ω2. Therefore we require that,

f (Ω1Ω2) = f (Ω1)+ f (Ω2) (2)

It may be obvious that only a logarithm can achieve this. If not, then a formal proof:

f ′(Ω1Ω2)Ω2 = f ′(Ω1) (differentiating EQN 2 w.r.t. Ω1) (3)

f ′′(Ω1Ω2)Ω1Ω2 + f ′(Ω1Ω2) = 0 (differentiating EQN 3 w.r.t. Ω2) (4)

=⇒ f ′′(x)x+ f ′(x) =
d(x f ′(x))

dx
= 0 (substituting Ω1Ω2 = x in EQN 4) (5)

=⇒ f ′(x) = kB/x (kB is an arbitrary constant at this stage) (6)

=⇒ f (x) = kB ln(x)+ const (7)

So if S and Ω are related then the relationship must be of the form S = kB ln(Ω)+S0. Setting the constant
S0 to zero defines a natural zero for the entropy, when the is only one possible state (Ω = 1, eg the system
is in a quantum ground state).

S = kB ln(Ω) Definition of statistical entropy for fixed energy (8)

Entropy of a system always increases with increasing temperature, because more states are accessible.
Taking the logarithm of our expression for an Ideal gas, EQN 1, we have:

SA+B−SA = kBN ln(2) (9)

SA+B is the statistical entropy of the gas freely occupying the whole volume, which is the final equilibrium
state of the system. SA is the statistical entropy when the gas is restricted to be in volume VA, which
is the initial state of the system. The expression is identical to the expression for the change in the
thermodynamic entropy if we identify kBNA = R, where NA = N/n is Avogadro’s number and kB is
Boltzmann’s constant.

Phase Space and the Existence of Quantum Mechanics

The exact state of a classical system on N particles (microstate requires us to specify the positions and
momenta of all the particles. We imagine a mathematical space with an axis for each (component of)
position and velocity. This is a 6N-dimensional space. Any microstate of the system is a point in this
space. As the system evolves in time, this point moves around. The ergodic hypothesis is that each of
these microstate is equally likely, provided it satisfies the boundary conditions.

The Boltzmann entropy is then defined by counting the number of possible arrangements of particles
in this phase space. But in order to count, the space must be countable, i.e. divisible into discrete chunks.
Considering one particle in one direction (say x), there should be a minimum area in the phase space
∆px∆x, it being impossible to measure the position in phase space more accurately. This idea is now
called “Heisenberg’s uncertainty principle”
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